Zobrazeno 1 - 10
of 588
pro vyhledávání: '"Szirmai, P"'
Autor:
Csima, Géza, Szirmai, Jenő
In the present paper we deal with non-constant curvature Thurston geometries \cite{M97}, \cite{S}, \cite{Sz22-3},\cite{W06}. We define and determine the generalized trans\-lation-like Apollonius surfaces and thus also bisector surfaces as a special c
Externí odkaz:
http://arxiv.org/abs/2410.22955
Autor:
Yahya, Arnasli, Szirmai, Jenő
In this paper, we present a new record for the densest geodesic congruent ball packing configurations in $\mathbf{H}^2\!\times\!\mathbf{R}$ geometry, generated by screw motion groups. These groups are derived from the direct product of rotational gro
Externí odkaz:
http://arxiv.org/abs/2407.21251
Autor:
Csima, Géza, Szirmai, Jenő
After having investigated the geodesic triangles and their angle sums in Nil and $Sl\times\mathbb{R}$ geometries we consider the analogous problem in Sol space that is one of the eight 3-dimensional Thurston geometries. We analyse the interior angle
Externí odkaz:
http://arxiv.org/abs/2405.05266
Autor:
Yahya, Arnasli, Szirmai, Jenő
After having investigated several types of geodesic ball packings in $\mathbf{S}^2 \times \mathbf{R}$ space, in this paper we study the locally optimal geodesic of simply and multiply transitive ball packings with equal balls to the space groups gene
Externí odkaz:
http://arxiv.org/abs/2311.12260
Autor:
Molnár, Emil, Szirmai, Jenő
We intend to continue our previous papers (\cite{MSz17} and \cite{MSz18}, as indicated there) on dense ball packing hyperbolic space $\HYP$ by equal balls, but here with centres belonging to different orbits of the fundamental group $Cw(2z, 3 \le z \
Externí odkaz:
http://arxiv.org/abs/2309.15168
Autor:
Szirmai, Jenő
In this paper we define the notion of infinite or bounded fibre-like geodesic cylinder in $\widetilde{\mathbf{S}\mathbf{L}_2\mathbf{R}}$ space, develop a method to determine its volume and total surface area. We prove that the common part of the abov
Externí odkaz:
http://arxiv.org/abs/2306.05721
Autor:
Márkus, B. G., Gmitra, M., Dóra, B., Csősz, G., Fehér, T., Szirmai, P., Náfrádi, B., Zólyomi, V., Forró, L., Fabian, J., Simon, F.
Publikováno v:
Nature Communications volume 14, Article number: 2831 (2023)
Graphite has been intensively studied, yet its electron spins dynamics remains an unresolved problem even 70 years after the first experiments. The central quantities, the longitudinal ($T_1$) and transverse ($T_2$) relaxation times were postulated t
Externí odkaz:
http://arxiv.org/abs/2305.15433
Autor:
Yahya, Arnasli, Szirmai, Jenő
After investigating the $3$-dimensional case [35], we continue to address and close the problems of optimal ball and horoball packings in truncated Coxeter orthoschemes with parallel faces that exist in $n$-dimensional hyperbolic space $\overline{\ma
Externí odkaz:
http://arxiv.org/abs/2305.05605
Autor:
Csima, Géza, Szirmai, Jenő
After having investigated the geodesic and translation triangles and their angle sums in $\SOL$ and $\SLR$ geometries we consider the analogous problem in $\NIL$ space that is one of the eight 3-dimensional Thurston geometries. We analyze the interio
Externí odkaz:
http://arxiv.org/abs/2302.07653
Autor:
Kozma, Robert T., Szirmai, Jenő
We determine the optimal horoball packing densities for the Koszul-type Coxeter simplex tilings in $\mathbb{H}^3$. We give a family of horoball packings parameterized by the Busemann function and symmetry group that achieve the simplicial packing den
Externí odkaz:
http://arxiv.org/abs/2205.03945