Zobrazeno 1 - 10
of 70
pro vyhledávání: '"Szilagyi, Zsolt"'
Autor:
Szilágyi, Zsolt
We present two formulas for Chern classes of the tensor product of two vector bundles. In the first formula we consider a matrix containing Chern classes of the first bundle and we take a polynomial of this matrix with Chern classes of the second bun
Externí odkaz:
http://arxiv.org/abs/1909.13278
Autor:
László, Tamás, Szilágyi, Zsolt
A polynomial counterpart of the Seiberg-Witten invariant associated with a negative definite plumbed 3-manifold has been proposed by earlier work of the authors. It is provided by a special decomposition of the zeta-function defined by the combinator
Externí odkaz:
http://arxiv.org/abs/1708.01093
Autor:
László, Tamás, Szilágyi, Zsolt
Publikováno v:
Acta Mathematica Hungarica 152 (2017), no. 2, 421-452
We construct a non-normal affine monoid together with its modules associated with a negative definite plumbed $3$-manifold $M$. In terms of their structure, we describe the $H_1(M,\mathbb{Z})$-equivariant parts of the topological Poincar\'e series. I
Externí odkaz:
http://arxiv.org/abs/1612.07537
Autor:
László, Tamás, Szilágyi, Zsolt
We study the counting function of topological Poincar\'e series associated with rational homology sphere plumbed 3-manifold with connected negative definite tree, interpreting as an alternating sum of coefficient functions associated with some Taylor
Externí odkaz:
http://arxiv.org/abs/1503.09012
Autor:
Szilágyi, Zsolt
Publikováno v:
The Hungarian Historical Review, 2019 Jan 01. 8(1), 121-152.
Externí odkaz:
https://www.jstor.org/stable/26902302
Autor:
Szilágyi, Zsolt
We generalize the Jeffrey-Kirwan localization theorem for non-compact symplectic and hyperKahler quotients. Similarly to the circle compact integration of Hausel and Proudfoot we define equivariant integrals on non-compact manifolds using the Atiyah-
Externí odkaz:
http://arxiv.org/abs/1302.6864
Autor:
Szilágyi, Zsolt
Publikováno v:
Journal of Symbolic Com- putation 79 (2017), 327-341
The Jeffrey-Kirwan residue is a powerful tool for computation of intersection numbers or volume of symplectic quotients. In this article, we give an algorithm to compute it using Gr\"obner bases. Our result is parallel to that of Cattani-Dickenstein
Externí odkaz:
http://arxiv.org/abs/1210.5155
Autor:
Szilagyi, Zsolt, Gustafsson, Claes M.
Publikováno v:
In BBA - Gene Regulatory Mechanisms September 2013 1829(9):916-920
Autor:
Khorosjutina, Olga, Wanrooij, Paulina H., Walfridsson, Julian, Szilagyi, Zsolt, Zhu, Xuefeng, Baraznenok, Vera, Ekwall, Karl, Gustafsson, Claes M. **
Publikováno v:
In Journal of Biological Chemistry 24 September 2010 285(39):29729-29737
Autor:
Elmlund, Hans, Baraznenok, Vera, Linder, Tomas, Szilagyi, Zsolt, Rofougaran, Reza, Hofer, Anders, Hebert, Hans, Lindahl, Martin, Gustafsson, Claes M.
Publikováno v:
In Structure 11 November 2009 17(11):1442-1452