Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Szilágyi, Zsombor"'
Motivated by general probability theory, we say that the set $X$ in $\mathbb{R}^d$ is \emph{antipodal of rank $k$}, if for any $k+1$ elements $q_1,\ldots q_{k+1}\in X$, there is an affine map from $\mathrm{conv} X$ to the $k$-dimensional simplex $\De
Externí odkaz:
http://arxiv.org/abs/2307.16857
Publikováno v:
IEEE Transactions on Information Theory, 68(2):1032-1067, (2022)
The trade-off between the two types of errors in binary state discrimination may be quantified in the asymptotics by various error exponents. In the case of simple i.i.d. hypotheses, each of these exponents is equal to a divergence (pseudo-distance)
Externí odkaz:
http://arxiv.org/abs/2011.04645
Autor:
Szilágyi, Zsombor
In this MSc thesis I consider the asymptotic behaviour of the symmetric error in composite hypothesis testing. In the classical case, when the null and alternative hypothesis are finite sets of states, the best achievable symmetric error exponent is
Externí odkaz:
http://arxiv.org/abs/2011.03342
Many deep, mysterious connections have been observed between collections of mutually unbiased bases (MUBs) and combinatorial designs called $k$-nets (and in particular, between complete collections of MUBs and finite affine - or equivalently: finite
Externí odkaz:
http://arxiv.org/abs/1907.02469
Autor:
Nietert, Sloan1 (AUTHOR), Szilágyi, Zsombor2 (AUTHOR), Weiner, Mihály3 (AUTHOR) mweiner@math.bme.hu
Publikováno v:
Journal of Combinatorial Designs. Dec2020, Vol. 28 Issue 12, p869-892. 24p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.