Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Szabolcs Tengely"'
Autor:
Hayder Raheem Hashim, Szabolcs Tengely
Publikováno v:
Mathematica Bohemica, Vol 147, Iss 3, Pp 301-318 (2022)
Let $(G_n)_{n \geq1}$ be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are $\{U_n\}$ and $\{V_n\}$, respectively. We show that the Diophantine equation $G_n=B \cdot(g^{lm}-1)/(g^l-1
Externí odkaz:
https://doaj.org/article/518b12c5b6e44bc4a7c158c3167f7b78
Autor:
Szabolcs Tengely, Hayder Raheem Hashim
Publikováno v:
Mathematica Bohemica. 147:301-318
Publikováno v:
Journal of Number Theory. 217:445-459
We study solvability of the Diophantine equation \begin{equation*} \frac{n}{2^{n}}=\sum_{i=1}^{k}\frac{a_{i}}{2^{a_{i}}}, \end{equation*} in integers $n, k, a_{1},\ldots, a_{k}$ satisfying the conditions $k\geq 2$ and $a_{i}
Comment: 13 pages, t
Comment: 13 pages, t
Autor:
Hayder Raheem Hashim, Szabolcs Tengely
Publikováno v:
Mathematica Slovaca. 70:1069-1078
In this paper, we find all the solutions (X, Y, Z) = (FI , FJ , FK ), where FI , FJ , and FK represent nonzero Fibonacci numbers, satisfying a generalization of Markoff equation called the Jin-Schmidt equation: AX 2 + BY 2 + CZ 2 = DXYZ + 1.
Autor:
Maciej Ulas, Szabolcs Tengely
Publikováno v:
International Journal of Number Theory. 16:2095-2111
We consider equations of the form [Formula: see text], where [Formula: see text] is a polynomial with integral coefficients and [Formula: see text] is the [Formula: see text]th Fibonacci number that is, [Formula: see text] and [Formula: see text] for
Autor:
Szabolcs Tengely, Maciej Ulas
We are interested in solving the congruences $f^3+g^3+1\equiv 0\pmod{fg}$ and $f^4-4g^2+4\equiv 0\pmod{fg}$ in polynomials $f, g$ with rational coefficients. Moreover, we present results of computations of all integer points on certain one parametric
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32e3ed4c297a8cd285180f52b31ea5b5
Autor:
Szabolcs Tengely, Maciej Ulas
Let $A\subset \N_{+}$ and by $P_{A}(n)$ denotes the number of partitions of an integer $n$ into parts from the set $A$. The aim of this paper is to prove several result concerning the existence of integer solutions of Diophantine equations of the for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1cdd34b198d79c86d8e570f54e90af15
https://ruj.uj.edu.pl/xmlui/handle/item/283437
https://ruj.uj.edu.pl/xmlui/handle/item/283437
Publikováno v:
Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti
Issue 546=25
Issue 546=25
ITRU cryptosystem is a public key cryptosystem and one of the known variants of NTRU cryptosystem. Instead of working in a truncated polynomial ring, ITRU cryptosystem is based on the ring of integers. The authors claimed that ITRU has better feature
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e23c9f69f109f4e6df7c2a034e7e47b9
http://arxiv.org/abs/2005.09258
http://arxiv.org/abs/2005.09258
Autor:
Szabolcs Tengely
Publikováno v:
Publicationes Mathematicae Debrecen. 92:115-132
In this paper we deal with composite rational functions having zeros and poles forming consecutive elements of an arithmetic progression. We also correct a result published earlier related to composite rational functions having a fixed number of zero
Publikováno v:
Acta Arithmetica. :1-17
We investigate power values of sums of products of consecutive integers. We give general finiteness results, and also give all solutions when the number of terms in the sum considered is at most ten.