Zobrazeno 1 - 10
of 106
pro vyhledávání: '"Szabó, Endre"'
Liebeck, Nikolov, and Shalev conjectured that for every subset A of a finite simple group S with |A|>1, there exist O( log|S| / log|A| ) conjugates of A whose product is S. This paper is a companion to [Lifshitz: Completing the proof of the Liebeck-N
Externí odkaz:
http://arxiv.org/abs/2408.07800
There are several results in the literature concerning $p$-groups $G$ with a maximal elementary abelian normal subgroup of rank $k$ due to Thompson, Mann and others. Following an idea of Sambale we obtain bounds for the number of generators etc. of a
Externí odkaz:
http://arxiv.org/abs/2305.02037
Autor:
Solymosi, Jozsef, Szabó, Endre
We show that there are five types of planar curves such that arrangements of its translates are combinatorially equivalent to an arrangement of lines. These curves can be used to define norms giving constructions with many unit distances among points
Externí odkaz:
http://arxiv.org/abs/2208.05525
Around twenty years ago Ghys conjectured that finite subgroups of the diffeomorphism group of a compact smooth manifold M have an abelian normal subgroup of index at most a(M), where a(M) depends only on M. First we construct a family of counterexamp
Externí odkaz:
http://arxiv.org/abs/2204.13375
If a finite p-group G acts continuously on a compact topological manifold M then, with some bound C depending on M alone, G has a subgroup H of index at most C such that the H-action on M has at most C stabilizer subgroups. This result plays a crucia
Externí odkaz:
http://arxiv.org/abs/2111.14450
Publikováno v:
In Journal of Algebra 1 June 2024 647:744-757
We prove a conjecture of Helfgott on the structure of sets of bounded tripling in bounded rank, which states the following. Let $A$ be a finite symmetric subset of $\mathrm{GL}_n(\mathbf{F})$ for any field $\mathbf{F}$ such that $|A^3| \leq K|A|$. Th
Externí odkaz:
http://arxiv.org/abs/2107.06674
Autor:
Solymosi, József, Szabó, Endre
Publikováno v:
In Linear Algebra and Its Applications 1 July 2023 668:161-172
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pál, Ambrus, Szabó, Endre
We show that a strong vanishing conjecture for $n$-fold Massey products holds for fields of virtual cohomological dimension at most $1$ using a theorem of Haran. We also prove the same for PpC fields, using results of Haran--Jarden. Finally we constr
Externí odkaz:
http://arxiv.org/abs/1811.06192