Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Szécsényi, István M."'
In this paper, we propose a new representation of the minimal form factors in integrable quantum field theories. These are solutions of the two-particle form factor equations, which have no poles on the physical sheet. Their expression constitutes th
Externí odkaz:
http://arxiv.org/abs/2311.16955
Autor:
Frassek, Rouven, Szécsényi, István M.
We consider the multiparticle asymmetric diffusion model (MADM) introduced by Sasamoto and Wadati with integrability preserving reservoirs at the boundaries. In contrast to the open asymmetric simple exclusion process (ASEP) the number of particles a
Externí odkaz:
http://arxiv.org/abs/2311.03603
We study a family of higher-twist Regge trajectories in $\mathcal{N}=4$ supersymmetric Yang-Mills theory using the Quantum Spectral Curve. We explore the many-sheeted Riemann surface connecting the different trajectories and show the interplay betwee
Externí odkaz:
http://arxiv.org/abs/2307.15107
Publikováno v:
JHEP 02 (2024) 083
We develop a new method to calculate finite size corrections for form factors in two-dimensional integrable quantum field theories. We extract these corrections from the excited state expectation value of bilocal operators in the limit when the opera
Externí odkaz:
http://arxiv.org/abs/2304.09135
Autor:
Frassek, Rouven, Szécsényi, István M.
In this note we construct Q-operators for the spin s open Heisenberg XXX chain with diagonal boundaries in the framework of the quantum inverse scattering method. Following the algebraic Bethe ansatz we diagonalise the introduced Q-operators using th
Externí odkaz:
http://arxiv.org/abs/2208.02197
Publikováno v:
In Nuclear Physics, Section B March 2024 1000
Publikováno v:
Phys. Rev. Lett. 124, 230601 (2020)
We study the dynamics of entanglement in the scaling limit of the Ising spin chain in the presence of both a longitudinal and a transverse field. We present analytical results for the quench of the longitudinal field in critical transverse field whic
Externí odkaz:
http://arxiv.org/abs/2001.10007
Publikováno v:
J. High Energ. Phys. 2019, 79 (2019)
We extend the branch point twist field approach for the calculation of entanglement entropies to time-dependent problems in 1+1-dimensional massive quantum field theories. We focus on the simplest example: a mass quench in the Ising field theory from
Externí odkaz:
http://arxiv.org/abs/1907.11735
Publikováno v:
J. Math. Phys. 60, 082301 (2019)
We consider two measures of entanglement, the logarithmic negativity and the entanglement entropy, between regions of space in excited states of many-body systems formed by a finite number of particle excitations. In parts I and II of the current ser
Externí odkaz:
http://arxiv.org/abs/1904.02615
Publikováno v:
JHEP11 (2019) 58
In this paper we study the increment of the entanglement entropy and of the (replica) logarithmic negativity in a zero-density excited state of a free massive bosonic theory, compared to the ground state. This extends the work of two previous publica
Externí odkaz:
http://arxiv.org/abs/1904.01035