Zobrazeno 1 - 10
of 122
pro vyhledávání: '"Symvoulidis, P"'
Exploring Machine Learning Algorithms for Infection Detection Using GC-IMS Data: A Preliminary Study
Autor:
Sardianos, Christos, Symvoulidis, Chrysostomos, Schlögl, Matthias, Varlamis, Iraklis, Papadopoulos, Georgios Th.
The developing field of enhanced diagnostic techniques in the diagnosis of infectious diseases, constitutes a crucial domain in modern healthcare. By utilizing Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) data and incorporating machine learn
Externí odkaz:
http://arxiv.org/abs/2404.15757
Autor:
Vizcaíno, Josué Page, Symvoulidis, Panagiotis, Wang, Zeguan, Jelten, Jonas, Favaro, Paolo, Boyden, Edward S., Lasser, Tobias
Real-time 3D fluorescence microscopy is crucial for the spatiotemporal analysis of live organisms, such as neural activity monitoring. The eXtended field-of-view light field microscope (XLFM), also known as Fourier light field microscope, is a straig
Externí odkaz:
http://arxiv.org/abs/2306.06408
Publikováno v:
Current Oncology, Vol 30, Iss 7, Pp 6648-6665 (2023)
Background: Statins are widely used due to their ability to lower plasma cholesterol and offer protection from the effects of atherosclerosis. However, their role in urology and specifically bladder cancer remains unclear. We aimed to systematically
Externí odkaz:
https://doaj.org/article/46bcf85d23ae4cc9860aa11a57d103ce
Autor:
Argyro Mavrogiorgou, Athanasios Kiourtis, George Manias, Chrysostomos Symvoulidis, Dimosthenis Kyriazis
Publikováno v:
Emerging Science Journal, Vol 7, Iss 2, Pp 339-353 (2023)
The healthcare sector has been moving toward Electronic Health Record (EHR) systems that produce enormous amounts of healthcare data due to the increased emphasis on getting the appropriate information to the right person, wherever they are, at any t
Externí odkaz:
https://doaj.org/article/012860c38bd94a39b49b3d18b140249d
Autor:
Athanasios Kiourtis, Argyro Mavrogiorgou, Georgios Makridis, Chrysostomos Symvoulidis, Konstantinos Mavrogiorgos, Dimosthenis Kyriazis
Publikováno v:
Proceedings of the XXth Conference of Open Innovations Association FRUCT, Vol 34, Iss 2, p 251 (2023)
Concerns related to the environmental harm caused by the production, use, and testing of hardware as well as software, are widespread throughout the world. Additionally, there is a problem that the associated subtasks use more power than they ought t
Externí odkaz:
https://doaj.org/article/cae82a31a3804cfda8d95b0473360af9
Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues
Autor:
Tzoumas, Stratis, Nunes, Antonio, Olefir, Ivan, Stangl, Stefan, Symvoulidis, Panagiotis, Glasl, Sarah, Bayer, Christine, Multhoff, Gabriele, Ntziachristos, Vasilis
Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation by tissue optical properties, an effect that causes spectral corruption. Predictions of the spectral variations of light fluence
Externí odkaz:
http://arxiv.org/abs/1511.05846
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Athanasios Kiourtis, Argyro Mavrogiorgou, Chrysostomos Symvoulidis, Charalampos Tsigkounis, Dimosthenis Kyriazis
Publikováno v:
Proceedings of the XXth Conference of Open Innovations Association FRUCT, Vol 28, Iss 1, Pp 158-166 (2021)
Electronic Health Record (EHR) data is being required to be shaped into a standardized and interoperable format for easy and secure accessing from anywhere, towards the vision of a borderless Health Information Exchange (HIE). Towards this vision, EH
Externí odkaz:
https://doaj.org/article/7664e1819d844f2e913cdb749ed2bb23
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ivan Lazic, Ferran Agullo, Susanna Ausso, Bruno Alves, Caroline Barelle, Josep Ll. Berral, Paschalis Bizopoulos, Oana Bunduc, Ioanna Chouvarda, Didier Dominguez, Dimitrios Filos, Alberto Gutierrez-Torre, Iman Hesso, Nikša Jakovljević, Reem Kayyali, Magdalena Kogut-Czarkowska, Alexandra Kosvyra, Antonios Lalas, Maria Lavdaniti, Tatjana Loncar-Turukalo, Sara Martinez-Alabart, Nassos Michas, Shereen Nabhani-Gebara, Andreas Raptopoulos, Yiannis Roussakis, Evangelia Stalika, Chrysostomos Symvoulidis, Olga Tsave, Konstantinos Votis, Andreas Charalambous
Publikováno v:
Applied Sciences, Vol 12, Iss 17, p 8755 (2022)
Finding new ways to cost-effectively facilitate population screening and improve cancer diagnoses at an early stage supported by data-driven AI models provides unprecedented opportunities to reduce cancer related mortality. This work presents the INC
Externí odkaz:
https://doaj.org/article/58fd8c5f904740d2bdadb36efa270fda