Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Sylvie Rœlly"'
Autor:
Sylvie Rœlly, Alexander Zass
Publikováno v:
Journal of Statistical Physics. 189
We correct here a mistake in the original paper. In particular, we add a term to the form of the interaction range. The addition of this term does not change the proof technique: while the proof was already correct, the specific form did not allow fo
Publikováno v:
Stochastic Analysis and Applications. 39:631-642
We study the asymptotic behavior of a real-valued diffusion whose nonregular drift is given as a sum of a dissipative term and a bounded measurable one. We prove that two trajectories of that diffu...
Autor:
Florian Hildebrandt, Sylvie Rœlly
Publikováno v:
Journal of Theoretical Probability. 33:906-917
In this article we consider a family of real-valued diffusion processes on the time interval $[0,1]$ indexed by their prescribed initial value $x \in \mathbb{R}$ and another point in space, $y \in \mathbb{R}$. We first present an easy-to-check condit
Autor:
D. Seu, Sylvie Roelly
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Recercat. Dipósit de la Recerca de Catalunya
instname
Publicacions Matemàtiques; Vol. 43, Núm. 1 (1999); p. 191-205
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Recercat. Dipósit de la Recerca de Catalunya
instname
Publicacions Matemàtiques; Vol. 43, Núm. 1 (1999); p. 191-205
We give a temporal ergodicity criterium for the solution of a class of infinite dimensional stochastic differential equations of gradient type, where the interaction has infinite range. We illustrate our theoretical result by typical examples.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cbc5e411a66c5d0214c5220438f9e7c3
http://hdl.handle.net/2072/379908
http://hdl.handle.net/2072/379908
Autor:
Sylvie Rœlly, Alexander Zass
We construct marked Gibbs point processes in $\mathbb{R}^d$ under quite general assumptions. Firstly, we allow for interaction functionals that may be unbounded and whose range is not assumed to be uniformly bounded. Indeed, our typical interaction a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b009136df962264181dd02bc6064ff7
http://arxiv.org/abs/1911.12800
http://arxiv.org/abs/1911.12800
Our first result concerns a characterization by means of a functional equation of Poisson point processes conditioned by the value of their first moment. It leads to a generalized version of Mecke’s formula. En passant, it also allows us to gain qu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1d8c977015457c4bace52adc5fde06f
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/47777
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/47777
Der englische Seefahrer Sir Walter Raleigh fragte sich einst, wie er in seinem Schiffsladeraum moeglichst viele Kanonenkugeln stapeln koennte. Johannes Kepler entwickelte daraufhin 1611 eine Vermutung ueber die optimale Anordnung der Kugeln. Diese Ve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::151cedab43bad0026107480cb4a872f1
Autor:
Giovanni Conforti, Sylvie Roelly
Publikováno v:
Bernoulli 23, no. 3 (2017), 1518-1537
In this paper, we characterize (mixtures of) bridges of a continuous time random walk with values in a countable Abelian group. Our main tool is a conditional version of Mecke’s formula from the point process theory, which allows us to study, as tr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fc117f82c649f0e78aebda91375301d2
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/46501
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/46501
Publikováno v:
Bernoulli 22, no. 2 (2016), 681-710
Bernoulli
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2016, 22 (2), pp.681-710. ⟨10.3150/14-BEJ672⟩
Bernoulli, 2016, 22 (2), pp.681-710. ⟨10.3150/14-BEJ672⟩
Bernoulli
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2016, 22 (2), pp.681-710. ⟨10.3150/14-BEJ672⟩
Bernoulli, 2016, 22 (2), pp.681-710. ⟨10.3150/14-BEJ672⟩
We study the long time behavior of a system of $n=2,3$ Brownian hard balls, living in $\mathbb{R}^d$ for $d\ge2$, submitted to a mutual attraction and to elastic collisions.
Comment: Published at http://dx.doi.org/10.3150/14-BEJ672 in the Bernou
Comment: Published at http://dx.doi.org/10.3150/14-BEJ672 in the Bernou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b590040786ea93fd41629bdad536d4b5
http://projecteuclid.org/euclid.bj/1447077758
http://projecteuclid.org/euclid.bj/1447077758
In this paper, using an algorithm based on the retrospective rejection sampling scheme introduced in [A. Beskos, O. Papaspiliopoulos, and G. O. Roberts,Methodol. Comput. Appl. Probab., 10 (2008), pp. 85-104] and [P. Etore and M. Martinez, ESAIM Proba
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37ae4f8fbad99ad1ca8ab0952fa9a460
https://publishup.uni-potsdam.de/files/9104/premath07.pdf
https://publishup.uni-potsdam.de/files/9104/premath07.pdf