Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Sylvester Eriksson‐Bique"'
Autor:
Sylvester Eriksson‐Bique, Jasun Gong
Publikováno v:
Transactions of the London Mathematical Society, Vol 8, Iss 1, Pp 243-298 (2021)
Abstract Here we show existence of many subsets of Euclidean spaces that, despite having empty interior, still support Poincaré inequalities with respect to the restricted Lebesgue measure. Most importantly, despite the explicit constructions in our
Externí odkaz:
https://doaj.org/article/bf63199f57f14519808ea074d1186e99
Autor:
Gareth Speight, Nageswari Shanmugalingam, Gianmarco Giovannardi, Sylvester Eriksson-Bique, Riikka Korte
Publikováno v:
Journal of Differential Equations. 306:590-632
We study existence, uniqueness, and regularity properties of the Dirichlet problem related to fractional Dirichlet energy minimizers in a complete doubling metric measure space $(X,d_X,\mu_X)$ satisfying a $2$-Poincar\'e inequality. Given a bounded d
Autor:
Sylvester Eriksson-Bique
In this paper, we show that the density in energy of Lipschitz functions in a Sobolev space $N^{1,p}(X)$ holds for all $p\in [1,\infty)$ whenever the space $X$ is complete and separable and the measure is Radon and finite on balls. Emphatically, $p=1
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9555bea05c21ad9827e8497ec682c45d
http://urn.fi/URN:NBN:fi:jyu-202302151761
http://urn.fi/URN:NBN:fi:jyu-202302151761
Autor:
Jeff Cheeger, Sylvester Eriksson-Bique
Publikováno v:
Communications on Pure and Applied Mathematics. 76:225-304
A carpet is a metric space which is homeomorphic to the standard Sierpinski carpet in $\mathbb{R}^2$, or equivalently, in $S^2$. A carpet is called thin if its Hausdorff dimension is $
Autor:
Sylvester Eriksson-Bique, Chris Gartland, Enrico Le Donne, Lisa Naples, Sebastiano Nicolussi Golo
Publikováno v:
International Mathematics Research Notices.
We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an $L^1$ space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into $L^1$ is abelian. Our proof follows
Autor:
Sylvester Eriksson-Bique, Jasun Gong
In this paper we construct a large family of examples of subsets of Euclidean space that support a 1-Poincaré inequality yet have empty interior. These examples are formed from an iterative process that involves removing well-behaved domains, or mor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e46b7723dd609bfa2d3797248ae2e018
http://urn.fi/urn:nbn:fi-fe2023050340524
http://urn.fi/urn:nbn:fi-fe2023050340524
We study necessary and sufficient conditions for a Muckenhoupt weight $w \in L^1_{\mathrm{loc}}(\mathbb R^d)$ that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions $u \in W^{1,p}_{\mathrm{loc}}(\mathbb R^d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d8fd0958ffce1b5db389d67dfa9499b2
We show that the 1st-order Sobolev spaces $W^{1,p}(\Omega _\psi ),$$1
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::53fc5976ced4d46597f8ebb6355815e7
http://urn.fi/URN:NBN:fi:jyu-202302021607
http://urn.fi/URN:NBN:fi:jyu-202302021607
Autor:
Sylvester Eriksson-Bique
Publikováno v:
Geometric and Functional Analysis. 29:119-189
We characterize complete RNP-differentiability spaces as those spaces which are rectifiable in terms of doubling metric measure spaces satisfying some local (1, p)-Poincare inequalities. This gives a full characterization of spaces admitting a strong
Autor:
Estibalitz Durand-Cartagena, Riikka Korte, Sylvester Eriksson-Bique, Nageswari Shanmugalingam
We consider two notions of functions of bounded variation in complete metric measure spaces, one due to Martio and the other due to Miranda~Jr. We show that these two notions coincide, if the measure is doubling and supports a $1$-Poincar\'e inequali
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::759fc2e4dad3d788454fde830b001ba9
https://aaltodoc.aalto.fi/handle/123456789/112038
https://aaltodoc.aalto.fi/handle/123456789/112038