Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Sylvain Saïghi"'
Publikováno v:
IEEE Access, Vol 11, Pp 146103-146121 (2023)
The massive deployment of the Internet of Things (IoT) combined with the need to reduce its impact on global energy consumption calls for the design of intelligent sensors. These sensors must be able to process information in situ to reduce the amoun
Externí odkaz:
https://doaj.org/article/0ac96f77a358410c8bfb509999d05ea2
Publikováno v:
IEEE Access, Vol 11, Pp 120654-120665 (2023)
Spiking Neural Networks (SNNs) are promising candidates for low-power and low-latency embedded artificial intelligence. However, those networks require event-based data produced by neuromorphic sensors which are not widely available, except for a few
Externí odkaz:
https://doaj.org/article/0de104579a714d9581c7c8d5c4c6fc0b
Autor:
Sören Boyn, Julie Grollier, Gwendal Lecerf, Bin Xu, Nicolas Locatelli, Stéphane Fusil, Stéphanie Girod, Cécile Carrétéro, Karin Garcia, Stéphane Xavier, Jean Tomas, Laurent Bellaiche, Manuel Bibes, Agnès Barthélémy, Sylvain Saïghi, Vincent Garcia
Publikováno v:
Nature Communications, Vol 8, Iss 1, Pp 1-7 (2017)
Accurate modelling of memristor dynamics is essential for the development of autonomous learning in artificial neural networks. Through a combined theoretical and experimental study of the polarization switching process in ferroelectric memristors, B
Externí odkaz:
https://doaj.org/article/4eca89cea8fb41d595066d4cec248c7a
Publikováno v:
Frontiers in Neuroscience, Vol 13 (2019)
Neurological diseases can be studied by performing bio-hybrid experiments using a real-time biomimetic Spiking Neural Network (SNN) platform. The Hodgkin-Huxley model offers a set of equations including biophysical parameters which can serve as a bas
Externí odkaz:
https://doaj.org/article/18d3a0f919a04192aeeefe0dfbae5982
Autor:
Sylvain Saïghi
Publikováno v:
Encyclopedia of Computational Neuroscience ISBN: 9781461473206
Encyclopedia of Computational Neuroscience
Encyclopedia of Computational Neuroscience
The design of analog silicon neurons has now been mastered (Indiveri et al. 2011), lowering computational cost down to a picojoule per action potential. However, considering a ratio of 1,000 synapses to 1 neuron, as observed in biological networks, t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::935c7328317e189459a7bdecb2ffed77
https://doi.org/10.1007/978-1-0716-1006-0_116
https://doi.org/10.1007/978-1-0716-1006-0_116
Publikováno v:
2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)
2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct 2019, Nara, Japan. pp.1-4, ⟨10.1109/BIOCAS.2019.8918992⟩
BioCAS
2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct 2019, Nara, Japan. pp.1-4, ⟨10.1109/BIOCAS.2019.8918992⟩
BioCAS
International audience; When aiming at efficient and low-power processing of event-based data, hardware implementations of spiking neural networks that co-integrate analog silicon neurons with memristive synaptic crossbar arrays are a promising frame
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e7258ac25dc62e5b59f86889f332eb54
https://hal.archives-ouvertes.fr/hal-02487821/document
https://hal.archives-ouvertes.fr/hal-02487821/document
Autor:
Sylvain Saïghi, Farad Khoyratee, Teruo Fujii, Kazuyuki Aihara, Stephany Mai Nishikawa, Luo Zhongyue, Timothée Levi, Yoshiho Ikeuchi, Soo Hyeon Kim
Publikováno v:
2019 IEEE International Symposium on Circuits and Systems (ISCAS)
2019 IEEE International Symposium on Circuits and Systems (ISCAS), May 2019, Sapporo, Japan. pp.1-5, ⟨10.1109/ISCAS.2019.8702407⟩
ISCAS
2019 IEEE International Symposium on Circuits and Systems (ISCAS), May 2019, Sapporo, Japan. pp.1-5, ⟨10.1109/ISCAS.2019.8702407⟩
ISCAS
Millions of people are affected by neurological disorders. Brain-Machine Interfaces (BMIs) and neuroprosthesis have been the object of extensive research and may represent a valid treatment for diverse neurological diseases. The realization of neurop
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a8e3826088bebdbb813f01803ec776be
https://hal.archives-ouvertes.fr/hal-02484011
https://hal.archives-ouvertes.fr/hal-02484011
Publikováno v:
Frontiers in Neuroscience, Vol 13 (2019)
Frontiers in Neuroscience
Frontiers in Neuroscience
Neurological diseases can be studied by performing bio-hybrid experiments using a real-time biomimetic Spiking Neural Network (SNN) platform. The Hodgkin-Huxley model offers a set of equations including biophysical parameters which can serve as a bas
Autor:
Sylvain Saïghi
The long term goal of ULPEC is to develop advanced vision applications with ultra-low power requirements and ultra-low latency. The output of the ULPEC project is a demonstrator connecting a neuromorphic event-based camera to a high speed ultra-low p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2659::0cab980052988c8b28a570035d1b0fa0
https://zenodo.org/record/3377132
https://zenodo.org/record/3377132
Publikováno v:
23th International Conference on Artificial Life and Robotics, ICAROB 2018
23th International Conference on Artificial Life and Robotics, ICAROB 2018, Feb 2018, Beppu, Japan
23th International Conference on Artificial Life and Robotics, ICAROB 2018, Feb 2018, Beppu, Japan
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68eaafb4386577d077790122b8c2af28
https://hal.archives-ouvertes.fr/hal-01709432
https://hal.archives-ouvertes.fr/hal-01709432