Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Sylvain Marié"'
Les auteurs proposent des analyses fines des nouvelles formes de vécus au travail et élaborent des concepts novateurs afin de circonscrire les dimen-sions fondamentales des nouvelles pratiques managériales.
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783031264184
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7c19c2b9cda9ec5619c5c195cf6be725
https://doi.org/10.1007/978-3-031-26419-1_13
https://doi.org/10.1007/978-3-031-26419-1_13
Publikováno v:
Relations Industrielles / Industrial Relations, 2021 Oct 01. 76(3), 607-610.
Externí odkaz:
https://www.jstor.org/stable/27114737
Little did Kathleen, Chief Architect at ArchiSurance, know, as she walked into a meeting with the CIO, just how much her job was going to change. Her intention had been to get approval for some new ideas she'd had to strengthen their Enterprise Archi
Autor:
Stéphane Lecoeuche, Tianyun Gao, Sylvain Marié, Patrick Beguery, Simon Thebault, Bartosz Boguslawski
Publikováno v:
Clima 2019
Clima 2019, May 2019, Bucharest, Romania
E3S Web of Conferences, Vol 111, p 05009 (2019)
Clima 2019, May 2019, Bucharest, Romania
E3S Web of Conferences, Vol 111, p 05009 (2019)
Data-driven automatic fault detection and diagnostics (AFDD) have gained a lot of research attention in recent years. Many existing solutions need to learn from the fault operation data to be able to diagnose the faults. However, these data are usual
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7288113df3e4a30dd349572eafa42139
https://hal.archives-ouvertes.fr/hal-03438801
https://hal.archives-ouvertes.fr/hal-03438801
Publikováno v:
2nd Italian-French Statistics Seminar-IFSS
2nd Italian-French Statistics Seminar-IFSS, Sep 2018, Grenoble, France
HAL
2nd Italian-French Statistics Seminar-IFSS, Sep 2018, Grenoble, France
HAL
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::a903f3ac34aad888c9b3af1caccf3860
https://hal.science/hal-01941685/document
https://hal.science/hal-01941685/document
Publikováno v:
JFRB 2018-9èmes Journées Francophones sur les Réseaux Bayésiens et les Modèles Graphiques Probabilistes
JFRB 2018-9èmes Journées Francophones sur les Réseaux Bayésiens et les Modèles Graphiques Probabilistes, May 2018, Toulouse, France. pp.14-24
HAL
JFRB 2018-9èmes Journées Francophones sur les Réseaux Bayésiens et les Modèles Graphiques Probabilistes, May 2018, Toulouse, France. pp.14-24
HAL
National audience; Learning the structure of Bayesian networks from data is a NP-Hard problem thatinvolves optimization over a super-exponential sized space. In this work, we show that in mostreal life datasets, a number of the arcs contained in the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::50157bd9f70329d4ebce48c3592708c4
https://hal.science/hal-01691217
https://hal.science/hal-01691217
Publikováno v:
Information Sciences
Information Sciences, Elsevier, 2017, pp.418-419. 〈10.1016/j.ins.2017.08.020〉
Information Sciences, Elsevier, 2017, 418-419, pp.418-419. ⟨10.1016/j.ins.2017.08.020⟩
Information Sciences, Elsevier, 2017, pp.418-419. 〈10.1016/j.ins.2017.08.020〉
Information Sciences, Elsevier, 2017, 418-419, pp.418-419. ⟨10.1016/j.ins.2017.08.020⟩
International audience; The definition of a metric between time series is inherent to several data analysis and mining tasks, including clustering, classification or forecasting. Time series data present naturally several modalities covering their am
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e70b465e5490b2552e3e7dd905af35d2
https://hal.archives-ouvertes.fr/hal-01579028
https://hal.archives-ouvertes.fr/hal-01579028
Publikováno v:
Advanced Analysis and Learning on Temporal Data
Advanced Analysis and Learning on Temporal Data, pp.131-143, 2016, 〈10.1007/978-3-319-44412-3_9 〉
Advanced Analysis and Learning on Temporal Data, pp.131-143, 2016, ⟨10.1007/978-3-319-44412-3_9⟩
Lecture Notes in Computer Science ISBN: 9783319444116
AALTD@PKDD/ECML (Revised Selected Papers)
Advanced Analysis and Learning on Temporal Data, pp.131-143, 2016, 〈10.1007/978-3-319-44412-3_9 〉
Advanced Analysis and Learning on Temporal Data, pp.131-143, 2016, ⟨10.1007/978-3-319-44412-3_9⟩
Lecture Notes in Computer Science ISBN: 9783319444116
AALTD@PKDD/ECML (Revised Selected Papers)
International audience; This work proposes a temporal and frequential metric learning framework for a time series nearest neighbor classification. For that, time series are embedded into a pairwise space where a combination function is learned based
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c186dcb3d2e54b01c848a448157fa7c3
https://hal.archives-ouvertes.fr/hal-01385071
https://hal.archives-ouvertes.fr/hal-01385071
Publikováno v:
EUSIPCO 2015-23th European Signal Processing Conference
EUSIPCO 2015-23th European Signal Processing Conference, Aug 2015, Nice, France
EUSIPCO
23rd European Signal Processing Conference (EUSIPCO-2015)
23rd European Signal Processing Conference (EUSIPCO-2015), Sep 2015, Nice, France
EUSIPCO 2015-23th European Signal Processing Conference, Aug 2015, Nice, France
EUSIPCO
23rd European Signal Processing Conference (EUSIPCO-2015)
23rd European Signal Processing Conference (EUSIPCO-2015), Sep 2015, Nice, France
International audience; Time series are complex data objects, they may present noise, varying delays or involve several temporal granularities. To classify time series, promising solutions refer to the combination of multiple basic metrics to compare
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::46d150822361e1ea5042be3259b60a4d
https://hal.archives-ouvertes.fr/hal-01202045/document
https://hal.archives-ouvertes.fr/hal-01202045/document