Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Sy Vinh Le"'
Autor:
Sy Vinh Le, von Haeseler Arndt
Publikováno v:
BMC Bioinformatics, Vol 6, Iss 1, p 92 (2005)
Abstract Background Understanding the evolutionary relationships among species based on their genetic information is one of the primary objectives in phylogenetic analysis. Reconstructing phylogenies for large data sets is still a challenging task in
Externí odkaz:
https://doaj.org/article/cf10d66c266f4ee4ab1857571614a020
Publikováno v:
American Journal of Medical Genetics Part A. 173:2126-2131
Dravet syndrome is a rare and severe type of epilepsy in infants. Approximately, 70-80% of patients with Dravet syndrome have mutations in SCN1A, the gene encoding the alpha-1 subunit of the sodium channel, while some simplex patients have variants i
Autor:
Thanh Liem Nguyen, Sy Vinh Le, Thi Dieu Linh Pham, Thi Thanh Ha Ly, Thi Phuong Hoa Bui, Thi Thanh Huong Le, Trung Kien Tran, Huy Duong Do
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bc9f6e3bf2426a1701c9d2452ca2cd18
https://europepmc.org/articles/PMC5641739/
https://europepmc.org/articles/PMC5641739/
Publikováno v:
Swarm Intelligence. 7:63-77
Haplotype information plays an important role in many genetic analyses. However, the identification of haplotypes based on sequencing methods is both expensive and time consuming. Current sequencing methods are only efficient to determine conflated d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
KSE
Current microarray technologies are able to assay thousands of samples over million of SNPs simultaneously. Computational approaches have been developed to analyse a huge amount of data from microarray chips to understand sophisticated human genomes.
Publikováno v:
KSE
Genotype data provide crucial information to understand effects of genetic variation to human health. Current microarray technologies are able to generate raw genotype data from thousands of samples across million of SNP sites. These raw data are pro
Autor:
Tillich M; Institut für Biologie, Humboldt Universität zu Berlin, Molekulare Genetik, Berlin D-10115, Germany. tillichm@staff.hu-berlin.de, Sy VL, Schulerowitz K, von Haeseler A, Maier UG, Schmitz-Linneweber C
Publikováno v:
BMC evolutionary biology [BMC Evol Biol] 2009 Aug 13; Vol. 9, pp. 201. Date of Electronic Publication: 2009 Aug 13.