Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Swennenhuis, C."'
Autor:
Janssen, T., Swennenhuis, C., Bitar, A., Bosman, T., Gijswijt, D., van Iersel, L., Dauzére-Pérès, S., Yugma, C.
We study the problem of scheduling jobs on parallel machines minimizing the total completion time, with each job using exactly one resource. First, we derive fundamental properties of the problem and show that the problem is polynomially solvable if
Externí odkaz:
http://arxiv.org/abs/1809.05009
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In a classical scheduling problem, we are given a set of $n$ jobs of unitlength along with precedence constraints and the goal is to find a schedule ofthese jobs on $m$ identical machines that minimizes the makespan. This problemis well-known to be N
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1874::abac915ab4ebef6484d8fa25543400b2
https://hdl.handle.net/21.11116/0000-000C-1F35-721.11116/0000-000C-1F37-5
https://hdl.handle.net/21.11116/0000-000C-1F35-721.11116/0000-000C-1F37-5
Publikováno v:
39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022
39th International Symposium on Theoretical Aspects of Computer Science
Leibniz International Proceedings in Informatics
39th International Symposium on Theoretical Aspects of Computer Science
Leibniz International Proceedings in Informatics
The Isolation Lemma of Mulmuley, Vazirani and Vazirani [Combinatorica'87] provides a self-reduction scheme that allows one to assume that a given instance of a problem has a unique solution, provided a solution exists at all. Since its introduction,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f07a115f36d6b49a1be42c1cf5fb48a
http://arxiv.org/abs/2105.01465
http://arxiv.org/abs/2105.01465
In the Bin Packing problem one is given $n$ items with weights $w_1,\ldots,w_n$ and $m$ bins with capacities $c_1,\ldots,c_m$. The goal is to find a partition of the items into sets $S_1,\ldots,S_m$ such that $w(S_j) \leq c_j$ for every bin $j$, wher
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32eb56a36c928535ce23fc7bf0edba5d
https://doi.org/10.48550/arxiv.2007.08204
https://doi.org/10.48550/arxiv.2007.08204
Autor:
Nederlof, Jesper, Swennenhuis, C��line
We study a natural variant of scheduling that we call \emph{partial scheduling}: In this variant an instance of a scheduling problem along with an integer $k$ is given and one seeks an optimal schedule where not all, but only $k$ jobs, have to be pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d802845e0dc446b737647899d6be3a10
http://arxiv.org/abs/1912.03185
http://arxiv.org/abs/1912.03185
We settle the parameterized complexities of several variants of independent set reconfiguration and dominating set reconfiguration, parameterized by the number of tokens. We show that both problems are XL-complete when there is no limit on the number
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::aecf97ed4b761005ddf19fd7736c468e
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.