Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Sverre O. Smalo"'
Publikováno v:
Journal of Algebra. 331:130-144
We determine the irreducible components of the variety of d-dimensional modules over the algebra k 〈 α , β 〉 / 〈 α 2 , β 2 , β α + q α β 〉 with q ∈ k ⁎ , for any d, and we describe any intersection of irreducible components as the
Autor:
Sverre O. Smalo
Publikováno v:
Milan Journal of Mathematics. 76:135-164
The purpose of this note is to give a fast introduction to some problems of homological and geometrical nature related to finite-dimensional representations of finitely generated, and especially, finite-dimensional algebras over a field. Some of thes
Autor:
Sverre O. Smalo, Anita Valenta
Publikováno v:
Colloquium Mathematicum. 108:63-71
Using geometrical methods, Huisgen-Zimmermann shows in [H-Z] that if M is a module with simple top, then M has no proper degeneration M
Autor:
B. Huisgen-Zimmermann, Sverre O. Smalo
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2005:1-37
We show that string algebras are `homologically tame' in the following sense: First, the syzygies of arbitrary representations of a finite dimensional string algebra $\Lambda$ are direct sums of cyclic representations, and the left finitistic dimensi
Publikováno v:
Journal of Algebra. 251(1):475-478
In this note we prove that for a left artinian ring of infinite global dimension there exists an indecomposable left module with both infinite projective dimension and infinite injective dimension.
Publikováno v:
Communications in Algebra. 29:593-610
Let M be an indecomposable nondirecting module over a finite dimensional k-algebra Λ, and form the extension of Λ by the Λ–G-bimodule M, where G ⊆ EndΛ (M)op. We will show that if such an extension is quasitilted, then G = EndΛ (M)op and G i
Autor:
Sverre O. Smalo
Publikováno v:
Proceedings of the American Mathematical Society. 129:695-698
Autor:
Lidia Angeleri Hügeli, Sverre O. Smalo
Publikováno v:
Colloquium Mathematicum. 81:293-297
Autor:
Sverre O. Smalo
Publikováno v:
Communications in Algebra. 35:1223-1225
The purpose of this note is to give an elementary proof of the fact discovered by Bautista and Perez that for an Artin algebra a module without selfextension is determined by its top and its first syzygy.
Autor:
Stig Venås, Sverre O. Smalo
Publikováno v:
Archiv der Mathematik. 70:182-186
This paper is devoted to proving the following result: An artin algebra is of infinite representation type if and only if there is no bound on the lengths of the endomorphism rings of finitely generated indecomposable modules, where the endomorphism