Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Svatopluk Krýsl"'
Autor:
Svatopluk Krýsl
Publikováno v:
Journal of Geometry and Physics. 101:27-37
For a C ∗ -algebra A of compact operators and a compact manifold M , we prove that the Hodge theory holds for A -elliptic complexes of pseudodifferential operators acting on smooth sections of finitely generated projective A -Hilbert bundles over M
Autor:
Svatopluk Krýsl
Publikováno v:
Annals of Global Analysis and Geometry. 47:359-372
For a class of co-chain complexes in the category of pre-Hilbert \(A\)-modules, we prove that their cohomology groups equipped with the canonical quotient topology are pre-Hilbert \(A\)-modules, and derive the Hodge theory and, in particular, the Hod
Autor:
Svatopluk Krýsl
For a symplectic manifold admitting a metaplectic structure and for a Kuiper map, we construct a complex of differential operators acting on exterior differential forms with values in the dual of the Kostant's symplectic spinor bundle. Defining a Hil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c6ca8717a796f4bdf5527609698a5449
http://arxiv.org/abs/1711.09937
http://arxiv.org/abs/1711.09937
Autor:
Svatopluk Krýsl
Publikováno v:
Annals of Global Analysis and Geometry. 45:197-210
We introduce a notion of ellipticity of complexes of linear pseudodifferential operators acting on sections of $A$-Hilbert bundles over smooth manifolds, $A$ being a $C^*$-algebra. We prove that the cohomology groups of an $A$-elliptic pseudodifferen
Autor:
Svatopluk Krýsl
Publikováno v:
Journal of Geometry and Physics. 60:1251-1261
We study symplectic manifolds $(M^{2l},\omega)$ equipped with a symplectic torsion-free affine (also called Fedosov) connection $\nabla$ and admitting a metaplectic structure. Let $\mathcal{S}$ be the so called symplectic spinor bundle and let $R^S$
Autor:
Svatopluk Krýsl
Publikováno v:
Monatshefte für Mathematik. 161:381-398
For a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure), we construct a sequence consisting of differential operators using a symplectic torsion-free affine connection. All but one of these
Autor:
Svatopluk Krýsl
Publikováno v:
Advances in Applied Clifford Algebras. 18:853-863
At an infinitesimal level, we will give a classification of 1 st order invariant differential operators acting on fields defined over contact projective geometries and having values in higher symplectic spinors. These fields are symplectic analogues
Autor:
Svatopluk Krýsl
We introduce a Hilbert $A$-module structure on the higher oscillatory module, where $A$ denotes the $C^*$-algebra of bounded endomorphisms of the basic oscillatory module. We also define the notion of an exterior covariant derivative in an $A$-Hilber
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a5bf27d4569890223b4b0e249b0e8011
Autor:
Svatopluk Krýsl, Milan Tuček
Publikováno v:
Toxicology Letters. 95:91
Autor:
Eric H. Weyand, Ondřej Topolčan, Ritu Singh, Milan Tuček, Ester Seberová, Svatopluk Krýsl, Ivan Mohyluk, Karel Maxa, Jana Tenglerová
Publikováno v:
Toxicology Letters. 95:91