Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Svaldi, Roberto"'
Autor:
Cascini, Paolo, Han, Jingjun, Liu, Jihao, Meng, Fanjun, Spicer, Calum, Svaldi, Roberto, Xie, Lingyao
For $\mathbb Q$-factorial klt algebraically integrable adjoint foliated structures, we prove the cone theorem, the contraction theorem, and the existence of flips. Therefore, we deduce the existence of the minimal model program for such structures. W
Externí odkaz:
http://arxiv.org/abs/2408.14258
We show that elliptic Calabi--Yau threefolds form a bounded family. We also show that the same result holds for minimal terminal threefolds of Kodaira dimension 2, upon fixing the rate of growth of pluricanonical forms and the degree of a multisectio
Externí odkaz:
http://arxiv.org/abs/2112.01352
Autor:
Moraga, Joaquín, Svaldi, Roberto
Given a projective contraction $\pi \colon X\rightarrow Z$ and a log canonical pair $(X, B)$ such that $-(K_X+B)$ is nef over a neighborhood of a closed point $z\in Z$, one can define an invariant, the complexity of $(X, B)$ over $z \in Z$, comparing
Externí odkaz:
http://arxiv.org/abs/2108.01717
Autor:
Spicer, Calum, Svaldi, Roberto
We explore the birational structure and invariants of a foliated surface $(X, \mathcal F)$ in terms of the adjoint divisor $K_{\mathcal F}+\epsilon K_X$, $0< \epsilon \ll 1$. We then establish a bound on the automorphism group of an adjoint general t
Externí odkaz:
http://arxiv.org/abs/2104.11540
Autor:
Liu, Haidong, Svaldi, Roberto
Publikováno v:
Doc. Math. 27, 1581-1604 (2022)
We give a criterion for a nef divisor $D$ to be semiample on a Calabi--Yau threefold $X$ when $D^3=0=c_2(X)\cdot D$ and $c_3(X)\neq 0$. As a direct consequence, we show that on such a variety $X$, if $D$ is strictly nef and $\nu(D)\neq 1$, then $D$ i
Externí odkaz:
http://arxiv.org/abs/2010.12233
Publikováno v:
Journal of Differential Geometry, Vol. 128, No. 2 (2024), pp. 463-519
We show that for each fixed dimension $d\geq 2$, the set of $d$-dimensional klt elliptic varieties with numerically trivial canonical bundle is bounded up to isomorphism in codimension one, provided that the torsion index of the canonical class is bo
Externí odkaz:
http://arxiv.org/abs/2010.09769
Autor:
Filipazzi, Stefano, Svaldi, Roberto
Publikováno v:
Forum of Mathematics, Sigma, 11, E33 (2023)
Let $(X,B)$ be a pair, and let $f \colon X \rightarrow S$ be a contraction with $-(K_X + B)$ nef over $S$. A conjecture, known as the Shokurov-Koll\'{a}r connectedness principle, predicts that $f^{-1} (s) \cap \mathrm{Nklt}(X,B)$ has at most two conn
Externí odkaz:
http://arxiv.org/abs/2010.08018
Publikováno v:
Geom. Topol. 26 (2022) 283-319
We show the Jordan property for regional fundamental groups of klt singularities of fixed dimension. Furthermore, we prove the existence of effective simultaneous index one covers for $n$-dimensional klt singularities. We give an application to the s
Externí odkaz:
http://arxiv.org/abs/2006.01253
Autor:
Filipazzi, Stefano, Svaldi, Roberto
Publikováno v:
Mat. Contemp. 47 (2020), 114--150. Proceedings of the ICM Satellite "Moduli spaces in Algebraic Geometry and Applications", Campinas, Brazil 2018
In this note, we survey some recent developments in birational geometry concerning the boundedness of algebraic varieties. We delineate a strategy to extend some of these results to the case of generalized pairs, first introduced by Birkar and Zhang,
Externí odkaz:
http://arxiv.org/abs/2005.04254
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.