Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Suyeon Hur"'
Autor:
Suyeon Hur, Seongmin Na, Dongup Kwon, Joonsung Kim, Andrew Boutros, Eriko Nurvitadhi, Jangwoo Kim
Publikováno v:
ACM Transactions on Architecture and Code Optimization. 20:1-24
Deep neural networks (DNNs) have become key solutions in the natural language processing (NLP) domain. However, the existing accelerators customized for their narrow target models cannot support diverse NLP models. Therefore, naively running complex
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
PACT
Emerging natural language processing (NLP) models have become more complex and bigger to provide more sophisticated NLP services. Accordingly, there is also a strong demand for scalable and flexible computer infrastructure to support these large-scal
Publikováno v:
DAC
The increasing size of recurrent neural networks (RNNs) makes it hard to meet the growing demand for real-time AI services. For low-latency RNN serving, FPGA-based accelerators can leverage specialized architectures with optimized dataflow. However,
Publikováno v:
DAC: Annual ACM/IEEE Design Automation Conference; 2020, Issue 57, p1142-1147, 6p