Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Suslina, Tatiana"'
Autor:
Suslina, Tatiana
In $L_2({\mathbb R}^d; {\mathbb C}^n)$, we consider a matrix strongly elliptic differential operator ${A}_\varepsilon$ of order $2p$, $p \geqslant 2$. The operator ${A}_\varepsilon$ is given by ${A}_\varepsilon = b(\mathbf{D})^* g(\mathbf{x}/\varepsi
Externí odkaz:
http://arxiv.org/abs/2011.13382
Autor:
Dorodnyi, Mark, Suslina, Tatiana
In $L_2({\mathbb R}^3;{\mathbb C}^3)$, we consider a selfadjoint operator ${\mathcal L}_\varepsilon$, $\varepsilon >0$, given by the differential expression $\mu_0^{-1/2}\operatorname{curl} \eta(\mathbf{x}/\varepsilon)^{-1} \operatorname{curl} \mu_0^
Externí odkaz:
http://arxiv.org/abs/2008.03047
Autor:
Dorodnyi, Mark, Suslina, Tatiana
Publikováno v:
Algebra I Analiz 32 (2020), no. 4 (Russian); English transl., St. Petersburg Math. J., 32 (2021), no. 4
In $L_2({\mathbb R}^d;{\mathbb C}^n)$, a selfadjoint strongly elliptic second order differential operator ${\mathcal A}_\varepsilon$ is considered. It is assumed that the coefficients of the operator ${\mathcal A}_\varepsilon$ are periodic and depend
Externí odkaz:
http://arxiv.org/abs/2007.13177
Autor:
Suslina, Tatiana
In a bounded domain $\mathcal{O}\subset\mathbb{R}^3$ of class $C^{1,1}$, we consider a stationary Maxwell system with the perfect conductivity boundary conditions. It is assumed that the dielectric permittivity and the magnetic permeability are given
Externí odkaz:
http://arxiv.org/abs/1810.12294
Autor:
Suslina, Tatiana
Publikováno v:
Algebra i Analiz 30 (2018), no. 3, 169--209
In a bounded domain $\mathcal{O}\subset\mathbb{R}^3$ of class $C^{1,1}$, we consider a stationary Maxwell system with the boundary conditions of perfect conductivity. It is assumed that the magnetic permeability is given by a constant positive $(3\ti
Externí odkaz:
http://arxiv.org/abs/1810.11328
Autor:
Dorodnyi, Mark, Suslina, Tatiana
In $L_2(\mathbb{R}^d;\mathbb{C}^n)$, we consider selfadjoint strongly elliptic second order differential operators ${\mathcal A}_\varepsilon$ with periodic coefficients depending on ${\mathbf x}/ \varepsilon$, $\varepsilon>0$. We study the behavior o
Externí odkaz:
http://arxiv.org/abs/1708.00859
Homogenization of the Neumann problem for higher-order elliptic equations with periodic coefficients
Autor:
Suslina, Tatiana
Let $\mathcal{O}\subset\mathbb{R}^d$ be a bounded domain of class $C^{2p}$. In $L_2(\mathcal{O};\mathbb{C}^n)$, we study a selfadjoint strongly elliptic operator $A_{N,\varepsilon}$ of order $2p$ given by the expression $b({\mathbf D})^* g({\mathbf x
Externí odkaz:
http://arxiv.org/abs/1705.08295
Autor:
Meshkova, Yulia, Suslina, Tatiana
Let $\mathcal{O}\subset\mathbb{R}^d$ be a bounded domain of class $C^{1,1}$. In $L_2(\mathcal{O};\mathbb{C}^n)$, we study a selfadjoint matrix elliptic second order differential operator $B_{D,\varepsilon}$, $0<\varepsilon\leqslant 1$, with the Diric
Externí odkaz:
http://arxiv.org/abs/1702.00550
Autor:
Dorodnyi, Mark, Suslina, Tatiana
In $L_2(\mathbb{R}^d;\mathbb{C}^n)$ we consider selfadjoint strongly elliptic second order differential operators ${\mathcal A}_\varepsilon$ with periodic coefficients depending on ${\mathbf x}/ \varepsilon$, $\varepsilon>0$. We study the behavior of
Externí odkaz:
http://arxiv.org/abs/1606.05868
Autor:
Kukushkin, Andrey, Suslina, Tatiana
In $L_2({\mathbb R}^d;{\mathbb C}^n)$, we study a selfadjoint strongly elliptic operator $A_\varepsilon$ of order $2p$ given by the expression $b({\mathbf D})^* g({\mathbf x}/\varepsilon) b({\mathbf D})$, $\varepsilon >0$. Here $g({\mathbf x})$ is a
Externí odkaz:
http://arxiv.org/abs/1511.04260