Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Susanto, Lucky"'
We present MetaMetrics-MT, an innovative metric designed to evaluate machine translation (MT) tasks by aligning closely with human preferences through Bayesian optimization with Gaussian Processes. MetaMetrics-MT enhances existing MT metrics by optim
Externí odkaz:
http://arxiv.org/abs/2411.00390
Autor:
Winata, Genta Indra, Hudi, Frederikus, Irawan, Patrick Amadeus, Anugraha, David, Putri, Rifki Afina, Wang, Yutong, Nohejl, Adam, Prathama, Ubaidillah Ariq, Ousidhoum, Nedjma, Amriani, Afifa, Rzayev, Anar, Das, Anirban, Pramodya, Ashmari, Adila, Aulia, Wilie, Bryan, Mawalim, Candy Olivia, Cheng, Ching Lam, Abolade, Daud, Chersoni, Emmanuele, Santus, Enrico, Ikhwantri, Fariz, Kuwanto, Garry, Zhao, Hanyang, Wibowo, Haryo Akbarianto, Lovenia, Holy, Cruz, Jan Christian Blaise, Putra, Jan Wira Gotama, Myung, Junho, Susanto, Lucky, Machin, Maria Angelica Riera, Zhukova, Marina, Anugraha, Michael, Adilazuarda, Muhammad Farid, Santosa, Natasha, Limkonchotiwat, Peerat, Dabre, Raj, Audino, Rio Alexander, Cahyawijaya, Samuel, Zhang, Shi-Xiong, Salim, Stephanie Yulia, Zhou, Yi, Gui, Yinxuan, Adelani, David Ifeoluwa, Lee, En-Shiun Annie, Okada, Shogo, Purwarianti, Ayu, Aji, Alham Fikri, Watanabe, Taro, Wijaya, Derry Tanti, Oh, Alice, Ngo, Chong-Wah
Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English and in underrepresented cultural contexts. To evaluate their understanding of such knowledge, we introduce WorldCuisines, a mas
Externí odkaz:
http://arxiv.org/abs/2410.12705
Understanding the quality of a performance evaluation metric is crucial for ensuring that model outputs align with human preferences. However, it remains unclear how well each metric captures the diverse aspects of these preferences, as metrics often
Externí odkaz:
http://arxiv.org/abs/2410.02381
Autor:
Susanto, Lucky, Wijanarko, Musa Izzanardi, Pratama, Prasetia Anugrah, Hong, Traci, Idris, Ika, Aji, Alham Fikri, Wijaya, Derry
Hate speech poses a significant threat to social harmony. Over the past two years, Indonesia has seen a ten-fold increase in the online hate speech ratio, underscoring the urgent need for effective detection mechanisms. However, progress is hindered
Externí odkaz:
http://arxiv.org/abs/2406.19349
Autor:
Lovenia, Holy, Mahendra, Rahmad, Akbar, Salsabil Maulana, Miranda, Lester James V., Santoso, Jennifer, Aco, Elyanah, Fadhilah, Akhdan, Mansurov, Jonibek, Imperial, Joseph Marvin, Kampman, Onno P., Moniz, Joel Ruben Antony, Habibi, Muhammad Ravi Shulthan, Hudi, Frederikus, Montalan, Railey, Ignatius, Ryan, Lopo, Joanito Agili, Nixon, William, Karlsson, Börje F., Jaya, James, Diandaru, Ryandito, Gao, Yuze, Amadeus, Patrick, Wang, Bin, Cruz, Jan Christian Blaise, Whitehouse, Chenxi, Parmonangan, Ivan Halim, Khelli, Maria, Zhang, Wenyu, Susanto, Lucky, Ryanda, Reynard Adha, Hermawan, Sonny Lazuardi, Velasco, Dan John, Kautsar, Muhammad Dehan Al, Hendria, Willy Fitra, Moslem, Yasmin, Flynn, Noah, Adilazuarda, Muhammad Farid, Li, Haochen, Lee, Johanes, Damanhuri, R., Sun, Shuo, Qorib, Muhammad Reza, Djanibekov, Amirbek, Leong, Wei Qi, Do, Quyet V., Muennighoff, Niklas, Pansuwan, Tanrada, Putra, Ilham Firdausi, Xu, Yan, Tai, Ngee Chia, Purwarianti, Ayu, Ruder, Sebastian, Tjhi, William, Limkonchotiwat, Peerat, Aji, Alham Fikri, Keh, Sedrick, Winata, Genta Indra, Zhang, Ruochen, Koto, Fajri, Yong, Zheng-Xin, Cahyawijaya, Samuel
Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts,
Externí odkaz:
http://arxiv.org/abs/2406.10118
Large Language Models (LLMs) demonstrate strong machine translation capabilities on languages they are trained on. However, the impact of factors beyond training data size on translation performance remains a topic of debate, especially concerning la
Externí odkaz:
http://arxiv.org/abs/2402.13917
Neural machine translation (NMT) for low-resource local languages in Indonesia faces significant challenges, including the need for a representative benchmark and limited data availability. This work addresses these challenges by comprehensively anal
Externí odkaz:
http://arxiv.org/abs/2311.00998