Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Susanne Pumplün"'
Autor:
Susanne Pumplün, Adam Owen
Publikováno v:
Communications in Mathematics, Vol 29, Iss 2, Pp 281-289 (2021)
We find examples of polynomials f ∈ D [t; σ, δ] whose eigenring ℰ(f) is a central simple algebra over the field F = C ∩ Fix(σ) ∩ Const(δ).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::143d00231e25c2e4aaf66f7f506d14b8
https://cm.episciences.org/9544
https://cm.episciences.org/9544
Autor:
Christian Brown, Susanne Pumplün
Publikováno v:
Glasgow Mathematical Journal. 62:S165-S185
For any central simple algebra over a field F which contains a maximal subfield M with non-trivial automorphism group G = AutF(M), G is solvable if and only if the algebra contains a finite chain of subalgebras which are generalized cyclic algebras o
Autor:
Susanne Pumplün
Publikováno v:
Advances in Mathematics of Communications. 11:615-634
Let \begin{document}$S$\end{document} be a unital ring, \begin{document}$S[t;\sigma,\delta]$\end{document} a skew polynomial ring where \begin{document}$\sigma$\end{document} is an injective endomorphism and \begin{document}$\delta$\end{document} a l
Autor:
Susanne Pumplün
We define a nonassociative generalization of cyclic Azumaya algebras employing skew polynomial rings $D[t;\sigma]$, where $D$ is an Azumaya algebra of constant rank with center $C$ and $\sigma$ an automorphism of $D$, such that $\sigma|_{C}$ has fini
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f1708abd992a102610c3b4603d4f4d4
Autor:
Susanne Pumplün
We generalize Amitsur's construction of central simple algebras over a field $F$ which are split by field extensions possessing a derivation with field of constants $F$ to nonassociative algebras: for every central division algebra $D$ over a field $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df1a8c25aceae6721ca022ed88871f3f
https://nottingham-repository.worktribe.com/file/960758/1/DifferentialAlgebras.pdf
https://nottingham-repository.worktribe.com/file/960758/1/DifferentialAlgebras.pdf
Autor:
Susanne Pumplün
Publikováno v:
Communications in Algebra. 43:2335-2366
We construct cubic Jordan algebras over an integral proper scheme X such that 2, 3 ∈ H 0(X, 𝒪 X ), generalizing a construction by B. N. Allison and J. R. Faulkner. In the process, we obtain admissible cubic algebras and pseudocomposition algebra
Autor:
Susanne Pumplün
Publikováno v:
Journal of Algebra. 427:20-29
We show that all non-constant polynomials in a skew-polynomial ring H [ t ; σ , δ ] over Hamilton's quaternions decompose into a product of linear factors, and that all non-constant polynomials in the skew-polynomial ring C [ t ; σ , δ ] decompos
Autor:
Susanne Pumplün
Publikováno v:
Journal of Algebra. 402:406-434
New families of eight-dimensional real division algebras with large derivation algebra are presented: We generalize the classical Cayley-Dickson doubling process starting with a unital algebra with involution over a field F by allowing the scalar in
Autor:
Susanne Pumplün
Publikováno v:
Journal of Algebra. 399:1-25
We obtain a family of non-unital eight-dimensional division algebras over a field F out of a separable quadratic field extension S of F, a three-dimensional anisotropic hermitian form over S of determinant one, and three invertible elements c , d , e
Autor:
Susanne Pumplün
Publikováno v:
Journal of Algebra. 440:639-641
Let D be the quaternion division algebra over a real closed field F. Then every non-constant polynomial in a skew-polynomial ring D [ t ; σ , δ ] decomposes into a product of linear factors, and thus has a zero in D. This improves [8, Theorem 2] .