Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Susana D. Moura"'
Autor:
Susana D. Moura
Publikováno v:
Revista Desassossego. 12:80-98
Tem-se vindo a assumir que a obra dramática de Bernardo Santareno teve início com A promessa (1957). Porém, há um conjunto de obras anteriores que não tem vindo a ser considerado pela crítica e pelo meio académico. A Confissão (1945) é um de
Publikováno v:
Nonlinear Analysis. 181:311-339
We study traces on the boundary of generalized smoothness Morrey spaces on C k domains Ω . These spaces are equipped with three parameters s , p , q and a function parameter φ . Our results remain valid for the usual Besov–Morrey spaces N u , p ,
Publikováno v:
Journal of Fourier Analysis and Applications. 26
We study embeddings of Besov–Morrey spaces $${{\mathcal {N}}}^{s}_{u,p,q}({{{\mathbb {R}}}^d})$$ and of Triebel–Lizorkin–Morrey spaces $${{\mathcal {E}}}^{s}_{u,p,q}({{{\mathbb {R}}}^d})$$ in the limiting cases when the smoothness s equals $$s_
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
We study embeddings between generalised Besov–Morrey spaces Nφ,p,qs(Rd). Both sufficient and necessary conditions for the embeddings are proved. Embeddings of the Besov–Morrey spaces into the Lebesgue spaces Lr(Rd) are also considered. Our appro
Autor:
Helena F. Gonçalves, Susana D. Moura
Publikováno v:
Mathematische Nachrichten. 291:2024-2044
In this paper we study the maximal function and local means characterizations and the non‐smooth atomic decomposition of the Triebel–Lizorkin type spaces with variable exponents Fp(·),q(·)s(·),ϕ(Rn). These spaces were recently introduced by Y
Publikováno v:
Science China Mathematics. 60:2349-2376
We study unboundedness of smoothness Morrey spaces on bounded domains Ω ⊂ Rn in terms of growth envelopes. It turns out that in this situation the growth envelope function is finite—in contrast to the results obtained by Haroske et al. (2016) fo
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 139:218-244
We study smoothness spaces of Morrey type on R n and characterise in detail when the spaces contain only regular distributions, i.e. when they can be embedded into L 1 loc . We also show that in all cases when it makes sense to study the growth envel
Autor:
Dorothee D. Haroske, Susana D. Moura
Publikováno v:
Acta Mathematica Sinica, English Series. 32:137-152
We study smoothness spaces of Morrey type on R n and characterise in detail those situations when such spaces of type A (R n ) or A (R n ) are not embedded into L ∞(R n ). We can show that in the so-called sub-critical, proper Morrey case their gro
Publikováno v:
Journal of Approximation Theory. 192:306-335
In this paper, the authors prove some Franke-Jawerth embedding for the Besov-type spaces B p , q s , ? ( R n ) and the Triebel-Lizorkin-type spaces F p , q s , ? ( R n ) . By using some limiting embedding properties of these spaces and the Besov-Morr
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
We study necessary and sufficient conditions for embeddings of Besov spaces of generalized smoothness B p , q ? , N ( R n ) into generalized Holder spaces ? ∞ , r µ ( ? ) ( R n ) when s ? ( N ? - 1 ) 0 and ? - 1 ? ? q ' , where ? = ? N - n / p . A