Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Suri, Sahaana"'
Whereas machine learning models typically learn language by directly training on language tasks (e.g., next-word prediction), language emerges in human children as a byproduct of solving non-language tasks (e.g., acquiring food). Motivated by this ob
Externí odkaz:
http://arxiv.org/abs/2306.08400
Structured data, or data that adheres to a pre-defined schema, can suffer from fragmented context: information describing a single entity can be scattered across multiple datasets or tables tailored for specific business needs, with no explicit linki
Externí odkaz:
http://arxiv.org/abs/2106.01501
Autor:
Suri, Sahaana, Chanda, Raghuveer, Bulut, Neslihan, Narayana, Pradyumna, Zeng, Yemao, Bailis, Peter, Basu, Sugato, Narlikar, Girija, Re, Christopher, Sethi, Abishek
Publikováno v:
PVLDB,13(12): 3396-3410, 2020
As applications in large organizations evolve, the machine learning (ML) models that power them must adapt the same predictive tasks to newly arising data modalities (e.g., a new video content launch in a social media application requires existing te
Externí odkaz:
http://arxiv.org/abs/2008.09983
Domain adaptation provides a powerful set of model training techniques given domain-specific training data and supplemental data with unknown relevance. The techniques are useful when users need to develop models with data from varying sources, of va
Externí odkaz:
http://arxiv.org/abs/1905.02304
Autor:
Suri, Sahaana, Bailis, Peter
Publikováno v:
DEEM'19: Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine Learning (2019)
Dimensionality reduction is a critical step in scaling machine learning pipelines. Principal component analysis (PCA) is a standard tool for dimensionality reduction, but performing PCA over a full dataset can be prohibitively expensive. As a result,
Externí odkaz:
http://arxiv.org/abs/1708.00183
Autor:
Swamy, Vasuki Narasimha, Suri, Sahaana, Rigge, Paul, Weiner, Matthew, Ranade, Gireeja, Sahai, Anant, Nikolic, Borivoje
High-performance industrial automation systems rely on tens of simultaneously active sensors and actuators and have stringent communication latency and reliability requirements. Current wireless technologies like WiFi, Bluetooth, and LTE are unable t
Externí odkaz:
http://arxiv.org/abs/1609.02968
As data volumes continue to rise, manual inspection is becoming increasingly untenable. In response, we present MacroBase, a data analytics engine that prioritizes end-user attention in high-volume fast data streams. MacroBase enables efficient, accu
Externí odkaz:
http://arxiv.org/abs/1603.00567
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Abuzaid, Firas, Kraft, Peter, Suri, Sahaana, Gan, Edward, Xu, Eric, Shenoy, Atul, Ananthanarayan, Asvin, Sheu, John, Meijer, Erik, Wu, Xi, Naughton, Jeff, Bailis, Peter, Zaharia, Matei
Publikováno v:
VLDB Journal International Journal on Very Large Data Bases; Jan2021, Vol. 30 Issue 1, p45-70, 26p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.