Zobrazeno 1 - 10
of 10 891
pro vyhledávání: '"Supersymmetric Quantum Mechanics"'
Semiclassical methods are essential in analyzing quantum mechanical systems. Although they generally produce approximate results, relatively rare potentials exist for which these methods are exact. Such intriguing potentials serve as crucial test cas
Externí odkaz:
http://arxiv.org/abs/2408.15424
Publikováno v:
Annals of Physics 467 (2024) 169718
A gauge invariant mathematical formalism based on deformation quantization is outlined to model an $\mathcal{N}=2$ supersymmetric system of a spin $1/2$ charged particle placed in a nocommutative plane under the influence of a vertical uniform magnet
Externí odkaz:
http://arxiv.org/abs/2405.02239
Autor:
Spiridonov, Vyacheslav P.
Publikováno v:
PoS (ICPPCRubakov2023) 038
Old studies on supersymmetric quantum mechanics and its deformations, that were initiated by the 1988 joint paper with V. Rubakov, are retrospectively discussed. In the modern circumstances, corresponding results can be related to computations of sup
Externí odkaz:
http://arxiv.org/abs/2404.10609
Autor:
Ito, Katsushi, Shu, Hongfei
Publikováno v:
JHEP03(2024)122
We study the spectral problem in deformed supersymmetric quantum mechanics with polynomial superpotential by using the exact WKB method and the TBA equations. We apply the ODE/IM correspondence to the Schr\"odinger equation with an effective potentia
Externí odkaz:
http://arxiv.org/abs/2401.03766
Publikováno v:
AIMS Mathematics, 9 (2024) 10494-10510
We present a novel $\mathcal{N} = 2 $ $\mathbb{Z}_2^2$-graded supersymmetric quantum mechanics ($\mathbb{Z}_2^2$-SQM) which has different features from those introduced so far. It is a two-dimensional (two-particle) system and is the first example of
Externí odkaz:
http://arxiv.org/abs/2401.02742
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Nucl. Phys. B 1009 (2024) 116729
Given an associative ring of $Z_2^n$-graded operators, the number of inequivalent brackets of Lie-type which are compatible with the grading and satisfy graded Jacobi identities is $b_n= n+\lfloor n/2\rfloor+1$. This follows from the Rittenberg-Wyler
Externí odkaz:
http://arxiv.org/abs/2309.00965
Autor:
Zhou, Tianchun
Systematic iterative algorithms of supersymmetric quantum mechanics (SUSYQM) type for solving the eigenequation of principal hypergeometric-like differential operator (HLDO) and for generating the eigenequation of associated HLDO itself as well its s
Externí odkaz:
http://arxiv.org/abs/2307.15948