Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Sungwan Bang"'
Autor:
Seokwon Han, Sungwan Bang
Publikováno v:
Journal of the Korean Data And Information Science Society. 33:785-799
Publikováno v:
Communications in Statistics - Simulation and Computation. :1-17
Quantile functions of the response variable provide a tool for practitioners to analyze both the central tendency and statistical dispersion of data. As a counterpart to the regression tree models,...
Publikováno v:
Journal of the Korean Data And Information Science Society. 32:463-473
Publikováno v:
Journal of Computational and Graphical Statistics. 28:454-465
In this article, we consider the estimation problem of a tree model for multiple conditional quantile functions of the response. Using the generalized, unbiased interaction detection and estimation...
Publikováno v:
Journal of the Korean Statistical Society. 47:471-481
We study variable selection in quantile regression with multiple responses. Instead of applying conventional penalized quantile regression to each response separately, it is desired to solve them simultaneously when the sparsity patterns of the regre
Autor:
Sungwan Bang, Jaeshin Park
Publikováno v:
The Korean Data Analysis Society. 19:3009-3018
현대 사회에서 삶을 영위하기 위하여 필수적인 요소인 전기는 많은 양을 저장할 수 없는 특성 때문에 정확한 전력수요를 바탕으로 적정량을 생산하는 것이 매우 중요하다. 원활한 전기 공
Publikováno v:
Korean Journal of Applied Statistics. 30:135-145
Publikováno v:
Korean Journal of Applied Statistics. 29:961-975
Publikováno v:
International Journal of Machine Learning and Cybernetics. 8:1211-1221
When input features are naturally grouped or generated by factors in a linear classification problem, it is more meaningful to identify important groups or factors rather than individual features. The F ∞-norm support vector machine (SVM) and the g
Publikováno v:
Communications in Statistics - Simulation and Computation. 46:2228-2240
The composite quantile regression (CQR) has been developed for the robust and efficient estimation of regression coefficients in a liner regression model. By employing the idea of the CQR, we propose a new regression method, called composite kernel q