Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Sung, Yih"'
Publikováno v:
J. Geom. Phys. 154 (2020), 103718, 18 pp
In the context of K3 mirror symmetry, the Greene-Plesser orbifolding method constructs a family of K3 surfaces, the mirror of quartic hypersurfaces in $\mathbb{P}^3$, starting from a special one-parameter family of K3 varieties known as the quartic D
Externí odkaz:
http://arxiv.org/abs/1912.06951
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Beers, Brecken, Sung, Yih
For a given elliptic curve, its associated $L$-function evaluated at $1$ is closely related to its real period. In this article, we generalize this principle to a rational curve. We count the rational points over all finite fields and use all the cou
Externí odkaz:
http://arxiv.org/abs/1911.12551
We present a new machine learning technique which calculates a real-valued, time independent, finite dimensional Hamiltonian matrix from only experimental data. A novel cost function is given along with a proof that the cost function has the theoreti
Externí odkaz:
http://arxiv.org/abs/1911.12548
Autor:
Sung, Yih
Let $X$ be a $n$ dimensional compact local Hermitian symmetric space of non-compact type and $L=\shO(K_X)\tens\shO(qM)$ be an adjoint line bundle. Let $c>0$ be a constant. Assume the curvature of $M$ is $\ge c\omega$, where $\omega$ is the k\"ahler f
Externí odkaz:
http://arxiv.org/abs/1901.10684
Autor:
Malmendier, Andreas, Sung, Yih
Publikováno v:
Res. Number Theory 5 (2019), no. 3, Paper No. 27, 23 pp
We consider the problem of counting the number of rational points on the family of Kummer surfaces associated with two non-isogenous elliptic curves. For this two-parameter family we prove Manin's unity, using the presentation of the Kummer surfaces
Externí odkaz:
http://arxiv.org/abs/1901.11151
Autor:
Sung, Yih
Suppose $f,g_1,\cdots,g_p$ are holomorphic functions over $\Omega\subset\cxC^n$. Then there raises a natural question: when can we find holomorphic functions $h_1,\cdots,h_p$ such that $f=\sum g_jh_j$? The celebrated Skoda theorem solves this questio
Externí odkaz:
http://dissertations.umi.com/gsas.harvard:10795
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11158233
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11158233
Publikováno v:
In Journal of Geometry and Physics August 2020 154
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sung, Yih
Publikováno v:
Taiwanese Journal of Mathematics, 2017 Feb 01. 21(1), 55-79.
Externí odkaz:
https://www.jstor.org/stable/90000348