Zobrazeno 1 - 10
of 89
pro vyhledávání: '"Sun, Zhenyao"'
Consider the $[0,1]$-valued continuous random field solution $(u_t(x))_{t\geq 0, x\in \mathbb R}$ to the one-dimensional stochastic heat equation \[ \partial_t u_t = \frac{1}{2}\Delta u_t + b(u_t) + \sqrt{u_t(1-u_t)} \dot W, \] where $b(1)\leq 0\leq
Externí odkaz:
http://arxiv.org/abs/2402.11160
Autor:
Qian, Li, Sun, Zhenyao
We consider an $(L,\kappa)$-lazy operation on an irreducible Markov transition probability $P$ with state space $S$ where $L \subset S$ and $\kappa\in[0,1)$. For each $x \in L$ and $y\in S$, this $(L,\kappa)$-operation replaces $P(x,y)$, the transiti
Externí odkaz:
http://arxiv.org/abs/2303.01270
Consider a system of Brownian particles on the real line where each pair of particles coalesces at a certain rate according to their intersection local time. Assume that there are infinitely many initial particles in the system. We give a necessary a
Externí odkaz:
http://arxiv.org/abs/2211.15298
Publikováno v:
In Mathematical Biosciences October 2024 376
Autor:
Xin, Jiaxun, Li, Jinning, Zeng, Qingqiu, Peng, Yu, Wang, Yan, Teng, Xiaoyi, Bao, Qianru, Yang, Linyan, Tang, Huining, Liu, Yuqi, Xie, Jiayao, Qi, Yue, Liu, Guanchen, Li, Xuyao, Tang, Ning, Sun, Zhenyao, Zeng, Weiying, Wei, Ziyu, Chen, Heyuan, He, Lizheng, Song, Chenxi, Zhang, Linmin, Qiu, Jingting, Wang, Xianfei, Xu, Xinyao, Chen, Chonghao
Publikováno v:
In Ecological Indicators September 2024 166
We consider a class of subcritical superprocesses $(X_t)_{t\geq 0}$ with general spatial motions and general branching mechanisms. We study the asymptotic behaviors of $\mathbf Q_{t,r}$, the distribution of $X_t$ conditioned on $X_{t+r}$ not being a
Externí odkaz:
http://arxiv.org/abs/2112.15184
We consider the $[0,1]$-valued solution $(u_{t,x}:t\geq 0, x\in \mathbb R)$ to the one dimensional stochastic reaction diffusion equation with Wright-Fisher noise \[\partial_t u= \partial_x^2 u + f(u) + \epsilon \sqrt{u(1-u)} \dot W.\] Here, $W$ is a
Externí odkaz:
http://arxiv.org/abs/2107.09377
This paper is a continuation of our recent paper (Elect. J. Probab. 24 (2019), no. 141) and is devoted to the asymptotic behavior of a class of supercritical super Ornstein-Uhlenbeck processes $(X_t)_{t\geq 0}$ with branching mechanisms of infinite s
Externí odkaz:
http://arxiv.org/abs/2005.11731
Suppose that $X$ is a subcritical superprocess. Under some asymptotic conditions on the mean semigroup of $X$, we prove the Yaglom limit of $X$ exists and identify all quasi-stationary distributions of $X$.
Externí odkaz:
http://arxiv.org/abs/2001.06697
Publikováno v:
In Stochastic Processes and their Applications September 2023 163:498-534