Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Sun, Zhenming"'
Autor:
HOU Yunbing, CHEN Youlong, WANG Yaxian, SUN Zhenming, REN Jie, WANG Legeng, MA Jing, DU Jianbiao
Publikováno v:
矿业科学学报, Vol 9, Iss 2, Pp 295-303 (2024)
Knowledge graph is an indispensable part of cognitive intelligence research.Aiming at the problem that the traditional analysis method of stope mine pressure hazard events has insufficient expression of the stress time and space evolution process and
Externí odkaz:
https://doaj.org/article/dc2d35b5614b454da02c898ddb433507
Autor:
Sun, Zhenming, Chen, Youlong, Hou, Yunbing, Li, Yarui, An, Xinyu, An, Yuan, Cao, Jinlong, Wang, Yaxian
Publikováno v:
In Heliyon 30 May 2024 10(10)
Publikováno v:
矿业科学学报, Vol 8, Iss 1, Pp 26-38 (2023)
If the shearer is cutting coal using the "memory cutting" technique, a manual demonstration is required.The memory cutting technology has higher requirements on the reserving conditions of coal seams.When the coal seam fluctuates greatly, frequent ma
Externí odkaz:
https://doaj.org/article/b7068626f77148ad83f365ae87338da8
Publikováno v:
Gong-kuang zidonghua, Vol 48, Iss 10, Pp 107-115 (2022)
With the development of the intelligent mine, open-pit coal mine unmanned transportation system has gradually carried out experimental applications. But the application of new technologies brings new management challenges. The existing emergency mana
Externí odkaz:
https://doaj.org/article/cad9906e2f5644a5917f3b4c33cfacd1
Publikováno v:
In Process Safety and Environmental Protection September 2022 165:336-346
Publikováno v:
In Journal of Alloys and Compounds 25 March 2022 898
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Xiang, Yeyang, Wang, Xiaojun, Hu, Xiaoshi, Meng, Linglong, Song, Zhengxiang, Li, Xuejian, Sun, Zhenming, Zhang, Qiang, Wu, Kun
Publikováno v:
In Composites Part A April 2019 119:225-234
Publikováno v:
In Journal of Magnesium and Alloys June 2018 6(2):164-170
Publikováno v:
Meikuang Anquan, Vol 51, Iss 8, Pp 193-198, 205 (2020)
In order to improve the accuracy of mine gas concentration prediction, an improved multi-variate adaptive weighted least squares support vector machine(AWLSSVM) gas prediction model for chaotic particle swarm optimization is proposed, and multi-step
Externí odkaz:
https://doaj.org/article/89184aa69b5642378de50d7caf045370