Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Sun, Shengding"'
Autor:
Kılınç-Karzan, Fatma, Sun, Shengding
We study quadratic programs with $m$ ball constraints, and the strength of a lifted convex relaxation for it recently proposed by Burer (2024). Burer shows this relaxation is exact when $m=2$. For general $m$, Burer (2024) provides numerical evidence
Externí odkaz:
http://arxiv.org/abs/2407.14992
We study properties of the convex hull of a set $S$ described by quadratic inequalities. A simple way of generating inequalities valid on $S$ is to take a nonnegative linear combinations of the defining inequalities of $S$. We call such inequalities
Externí odkaz:
http://arxiv.org/abs/2210.01722
A linear principal minor polynomial or lpm polynomial is a linear combination of principal minors of a symmetric matrix. By restricting to the diagonal, lpm polynomials are in bijection to multiaffine polynomials. We show that this establishes a one-
Externí odkaz:
http://arxiv.org/abs/2112.13321
The minimum linear ordering problem (MLOP) generalizes well-known combinatorial optimization problems such as minimum linear arrangement and minimum sum set cover. MLOP seeks to minimize an aggregated cost $f(\cdot)$ due to an ordering $\sigma$ of th
Externí odkaz:
http://arxiv.org/abs/2108.00914
A successful computational approach for solving large-scale positive semidefinite (PSD) programs is to enforce PSD-ness on only a collection of submatrices. For our study, we let $\mathcal{S}^{n,k}$ be the convex cone of $n\times n$ symmetric matrice
Externí odkaz:
http://arxiv.org/abs/2012.04031
While semidefinite programming (SDP) problems are polynomially solvable in theory, it is often difficult to solve large SDP instances in practice. One technique to address this issue is to relax the global positive-semidefiniteness (PSD) constraint a
Externí odkaz:
http://arxiv.org/abs/2002.02988
Publikováno v:
Mathematical Programming; Nov2024, Vol. 208 Issue 1/2, p277-318, 42p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
International Mathematics Research Notices.
A linear principal minor polynomial or lpm polynomial is a linear combination of principal minors of a symmetric matrix. By restricting to the diagonal, lpm polynomials are in bijection with multiaffine polynomials. We show that this establishes a on