Zobrazeno 1 - 10
of 81
pro vyhledávání: '"Sun, Dennis"'
Autor:
Ignatiadis, Nikolaos, Sun, Dennis L.
We demonstrate how data fission, a method for creating synthetic replicates from single observations, can be applied to empirical Bayes estimation. This extends recent work on empirical Bayes with multiple replicates to the classical single-replicate
Externí odkaz:
http://arxiv.org/abs/2410.12117
Autor:
Madsen, Julia, Dascalos, Zoe, Ramsey, Kristina, Mayer, Freddie, Wong, Connie, Raposo, Zach, Hunter, Rachel, Reinhart, Mac, Carlson, Alexandra, Catlin, Austin, Mihelic, Tanner, Pfahler, Zoe, Carroll, Alec, Angelich, Kyle, Stubler, Craig, Sun, Dennis, Betts, Aaron, Appel, Chip
Publikováno v:
In Chemosphere August 2024 362
We study empirical Bayes estimation of the effect sizes of $N$ units from $K$ noisy observations on each unit. We show that it is possible to achieve near-Bayes optimal mean squared error, without any assumptions or knowledge about the effect size di
Externí odkaz:
http://arxiv.org/abs/1911.05970
Autor:
Boyd, Alex, Sun, Dennis L.
Publikováno v:
Journal of Statistical Software, 108(8), 1-26 (2024)
One of the most attractive features of R is its linear modeling capabilities. We describe a Python package, salmon, that brings the best of R's linear modeling functionality to Python in a Pythonic way -- by providing composable objects for specifyin
Externí odkaz:
http://arxiv.org/abs/1911.00648
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sun, Dennis L.
Publikováno v:
The American Mathematical Monthly, 2020 Oct 01. 127(8), 716-716.
Externí odkaz:
https://www.jstor.org/stable/48661502
Feedback has a powerful influence on learning, but it is also expensive to provide. In large classes, it may even be impossible for instructors to provide individualized feedback. Peer assessment has received attention lately as a way of providing pe
Externí odkaz:
http://arxiv.org/abs/1410.3853
To perform inference after model selection, we propose controlling the selective type I error; i.e., the error rate of a test given that it was performed. By doing so, we recover long-run frequency properties among selected hypotheses analogous to th
Externí odkaz:
http://arxiv.org/abs/1410.2597
Publikováno v:
Annals of Statistics 2016, Vol. 44, No. 3, 907-927
We develop a general approach to valid inference after model selection. At the core of our framework is a result that characterizes the distribution of a post-selection estimator conditioned on the selection event. We specialize the approach to model
Externí odkaz:
http://arxiv.org/abs/1311.6238
Autor:
Sun, Dennis L., Smith III, Julius O.
The problem of recovering a signal from the magnitude of its short-time Fourier transform (STFT) is a longstanding one in audio signal processing. Existing approaches rely on heuristics that often perform poorly because of the nonconvexity of the pro
Externí odkaz:
http://arxiv.org/abs/1209.2076