Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Sumita Garai"'
Autor:
Duy Duong-Tran, Nghi Nguyen, Shizhuo Mu, Jiong Chen, Jingxuan Bao, Frederick H. Xu, Sumita Garai, Jose Cadena-Pico, Alan David Kaplan, Tianlong Chen, Yize Zhao, Li Shen, Joaquín Goñi
Publikováno v:
Mathematics, Vol 12, Iss 19, p 2967 (2024)
In systems and network neuroscience, many common practices in brain connectomic analysis are often not properly scrutinized. One such practice is mapping a predetermined set of sub-circuits, like functional networks (FNs), onto subjects’ functional
Externí odkaz:
https://doaj.org/article/d876363623f847cebdf3c340f3893d1f
Autor:
Duy Duong-Tran, Ralph Kaufmann, Jiong Chen, Xuan Wang, Sumita Garai, Frederick H. Xu, Jingxuan Bao, Enrico Amico, Alan D. Kaplan, Giovanni Petri, Joaquin Goni, Yize Zhao, Li Shen
Publikováno v:
Mathematics, Vol 12, Iss 3, p 455 (2024)
Human whole-brain functional connectivity networks have been shown to exhibit both local/quasilocal (e.g., a set of functional sub-circuits induced by node or edge attributes) and non-local (e.g., higher-order functional coordination patterns) proper
Externí odkaz:
https://doaj.org/article/25a914340ab04742adde15cef79ce56c
Autor:
Mihran Papikian, Sumita Garai
Publikováno v:
Journal of Number Theory. 232:155-176
Let A = F q [ T ] be the polynomial ring over F q , and F be the field of fractions of A. Let ϕ be a Drinfeld A-module of rank r ≥ 2 over F. For all but finitely many primes p ◁ A , one can reduce ϕ modulo p to obtain a Drinfeld A-module ϕ ⊗
Publikováno v:
2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
Publikováno v:
2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
Autor:
Mihran Papikian, Sumita Garai
Let $\mathbb{F}_q[T]$ be the polynomial ring over a finite field $\mathbb{F}_q$. We study the endomorphism rings of Drinfeld $\mathbb{F}_q[T]$-modules of arbitrary rank over finite fields. We compare the endomorphism rings to their subrings generated
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aa89df988c0d4f5b599c8648a6431e2a
http://arxiv.org/abs/1908.01805
http://arxiv.org/abs/1908.01805
Autor:
Mihran Papikian, Sumita Garai
Let $A=\mathbb{F}_q[T]$ be the polynomial ring over $\mathbb{F}_q$, and $F$ be the field of fractions of $A$. Let $\phi$ be a Drinfeld $A$-module of rank $r\geq 2$ over $F$. For all but finitely many primes $\mathfrak{p}\lhd A$, one can reduce $\phi$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::98cbc75ee8132bab4d0b8c8f67d2e925
http://arxiv.org/abs/1804.07904
http://arxiv.org/abs/1804.07904