Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Sumaia Saad Eddin"'
Autor:
Isao Kiuchi, Sumaia Saad Eddin
Publikováno v:
International Journal of Number Theory. 18:2005-2013
Let [Formula: see text] be the additive group of residue classes modulo [Formula: see text]. For any positive integers [Formula: see text] and [Formula: see text], let [Formula: see text] and [Formula: see text] denote the total number of subgroups a
Publikováno v:
The Ramanujan Journal
Let f be an arithmetic function and let $${\mathcal {S}}^\#$$ S # denote the extended Selberg class. We denote by $${\mathcal {L}}(s) = \sum _{n = 1}^{\infty }\frac{f(n)}{n^s}$$ L ( s ) = ∑ n = 1 ∞ f ( n ) n s the Dirichlet series attached to f.
Publikováno v:
Journal of Number Theory
The Jordan totient $J_k(n)$ can be defined by $J_k(n)=n^k\prod_{p\mid n}(1-p^{-k})$. In this paper, we study the average behavior of fractions $P/Q$ of two products $P$ and $Q$ of Jordan totients, which we call Jordan totient quotients. To this end,
Autor:
Kohji Matsumoto, Sumaia Saad Eddin
Publikováno v:
Journal of the Mathematical Society of Japan. 73
Let $q$ be a positive integer ($\geq 2$), $\chi$ be a Dirichlet character modulo $q$, $L(s, \chi)$ be the attached Dirichlet $L$-function, and let $L^{\prime} (s, \chi)$ denote its derivative with respect to the complex variable $s$. Let $t_{0}$ be a
Autor:
Sumaia SAAD EDDIN1
Publikováno v:
Proceedings of the Japan Academy, Series A: Mathematical Sciences. Dec2017, Vol. 93 Issue 10, p120-123. 4p.
Publikováno v:
Results in Mathematics. 76
Let $\gcd(k,j)$ denote the greatest common divisor of the integers $k$ and $j$, and let $r$ be any fixed positive integer. Define $$ M_r(x; f) := \sum_{k\leq x}\frac{1}{k^{r+1}}\sum_{j=1}^{k}j^{r}f(\gcd(j,k)) $$ for any large real number $x\geq 5$, w
Autor:
Isao Kiuchi, Sumaia Saad Eddin
Publikováno v:
Results in Mathematics. 75
Let $$ \gcd (k,j) $$ be the greatest common divisor of the integers k and j. For any arithmetic function f, we establish several asymptotic formulas for weighted averages of gcd-sum functions with weight concerning logarithms, that is $$\begin{aligne
Autor:
Sumaia Saad Eddin, Isao Kiuchi
Publikováno v:
International Journal of Number Theory. 14:2699-2728
Let [Formula: see text] be the greatest common divisor of the integers [Formula: see text] and [Formula: see text]. In this paper, we give several interesting asymptotic formulas for weighted averages of the [Formula: see text]-sum function [Formula:
Autor:
Yuta Suzuki, Sumaia Saad Eddin
For a real parameter $r$, the RSA integers are integers which can be written as the product of two primes $pq$ with $p
Comment: 28 pages
Comment: 28 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d8e4532760c368bfacbf53730c6773d
Autor:
Sumaia Saad Eddin
Publikováno v:
International Journal of Number Theory. 12:2299-2315
Let [Formula: see text] be a primitive Dirichlet character of conductor [Formula: see text] and let us denote by [Formula: see text] the associated [Formula: see text]-series. In this paper, we provide an explicit upper bound for [Formula: see text]