Zobrazeno 1 - 10
of 420
pro vyhledávání: '"Sukochev, F. A."'
We treat the notion of principal symbol mapping on a compact smooth manifold as a $\ast$-homomorphism of $C^{\ast}$-algebras. Principal symbol mapping is built from the ground, without referring to the pseudodifferential calculus on the manifold. Our
Externí odkaz:
http://arxiv.org/abs/2309.04500
For a certain class of discrete metric spaces, we provide a formula for the density of states. This formula involves Dixmier traces and is proven using recent advances in operator theory. Various examples are given of metric spaces for which this for
Externí odkaz:
http://arxiv.org/abs/2202.03676
We fix a gap in the proof of a result in our earlier paper arXiv:1908.09548
Comment: 5
Comment: 5
Externí odkaz:
http://arxiv.org/abs/2004.13311
Autor:
de Pagter, B., Sukochev, F. A.
The main pupose of this paper is to fully characterize continuous concave functions $\psi $ such that the corresponding Marcinkiewicz Banach function space $M_{\psi }$ is a Grothendieck space.
Comment: 24 pages
Comment: 24 pages
Externí odkaz:
http://arxiv.org/abs/1912.01162
Publikováno v:
In Journal of Functional Analysis 15 November 2023 285(10)
Publikováno v:
In Journal of Functional Analysis 15 October 2023 285(8)
In this paper, we study the boundedness of the Hilbert transformation in Lorentz function spaces, thereby complementing classical results of Boyd. We also characterize the optimal range of a triangular truncation operator in Schatten-Lorentz ideals.
Externí odkaz:
http://arxiv.org/abs/1909.10897
We identify the optimal range of the Calder\`{o}n operator and that of the classical Hilbert transform in the class of symmetric quasi-Banach spaces. Further consequences of our approach concern the optimal range of the triangular truncation operator
Externí odkaz:
http://arxiv.org/abs/1908.09548
Let $f$ be an arbitrary integrable function on a finite measure space $(X,\Sigma, \nu)$. We characterise the extreme points of the set $\Omega (f)$ of all measurable functions on $(X,\Sigma, \nu)$ majorised by $f$, providing a complete answer to a pr
Externí odkaz:
http://arxiv.org/abs/1904.06068
Autor:
Huang, J., Sukochev, F.
Let ${\mathcal M}$ be a semifinite von Neumann algebra with a faithful semifinite normal trace $\tau$. We show that the symmetrically $\Delta$-normed operator space $E({\mathcal M},\tau)$ corresponding to an arbitrary symmetrically $\Delta$-normed fu
Externí odkaz:
http://arxiv.org/abs/1902.05907