Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Sugiyama, Shingo"'
Autor:
Sakugawa, Kenji, Sugiyama, Shingo
We prove that Hecke eigenvalues for any Hilbert and Siegel modular forms are algebraic integers. Our method does not rely on cohomologicality nor Galois representations. We apply the integrality of Hecke eigenvalues for Hilbert modular forms of non-p
Externí odkaz:
http://arxiv.org/abs/2401.11716
Publikováno v:
Res. Math. Sci.,11, article number 62, (2024)
We extend a certain type of identities on sums of $I$-Bessel functions on lattices, previously given by G. Chinta, J. Jorgenson, A. Karlsson and M. Neuhauser. Moreover we prove that, with continuum limit, the transformation formulas of theta function
Externí odkaz:
http://arxiv.org/abs/2311.06489
Autor:
Sugiyama, Shingo
Let $\Gamma$ be a Fuchsian group in ${\rm SL}_2(\mathbb{R})$. In this note, we discuss the existence of $\rho$-equivariant functions for a two-dimensional representation $\rho$ of $\Gamma$. This assertion was first stated by Saber and Sebbar in 2020,
Externí odkaz:
http://arxiv.org/abs/2205.08490
Autor:
Sugiyama, Shingo, Suriajaya, Ade Irma
Publikováno v:
Res. Number Theory 8 (2022), article number 55
In this paper, we compute the one-level density of low-lying zeros of Dirichlet $L$-functions in a family weighted by special values of Dirichlet $L$-functions at a fixed $s \in [1/2, 1)$. We verify both Fazzari's conjecture and the first author's co
Externí odkaz:
http://arxiv.org/abs/2201.00326
Autor:
Sugiyama, Shingo
For a totally real number field $F$ and its ad\`ele ring $\mathbb{A}_F$, let $\pi$ vary in the set of irreducible cuspidal automorphic representations of ${\rm PGL}_2(\mathbb{A}_F)$ corresponding to primitive Hilbert modular forms of a fixed weight.
Externí odkaz:
http://arxiv.org/abs/2101.06705
Autor:
Hasegawa, Takehiro, Komatsu, Takashi, Konno, Norio, Saigo, Hayato, Saito, Seiken, Sato, Iwao, Sugiyama, Shingo
Publikováno v:
Ann. Comb., 27, 249-268 (2023)
We give a limit theorem with respect to the matrices related to non-backtracking paths of a regular graph. The limit obtained closely resembles the $k$th moments of the arcsine law. Furthermore, we obtain the asymptotics of the averages of the $p^m$t
Externí odkaz:
http://arxiv.org/abs/2005.09341
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sugiyama, Shingo, Tsuzuki, Masao
Publikováno v:
Ramanujan J, 52 (2020), 91--104
In this paper, we give an optimal estimate of an average of Hurwitz class numbers. As an application, we give an equidistribution result of the family $\{\frac{t}{2q^{\nu/2}} \ | \ \nu \in \mathbb{N}, t \in \mathbb{Z}, |t|<2q^{\nu/2}\}$ with $q$ prim
Externí odkaz:
http://arxiv.org/abs/1806.08480
Autor:
Sugiyama, Shingo, Tsuzuki, Masao
Publikováno v:
Math. Z., 301 (2022), 1447--1479
Let $\phi$ be an even Hecke-Maass cusp form on ${\rm SL}_2(\mathbb{Z})$ whose $L$-function does not vanish at the center of the functional equation. In this article, we obtain an exact formula of the average of triple products of $\phi$, $f$ and $\ba
Externí odkaz:
http://arxiv.org/abs/1805.00209
Publikováno v:
Infin. Dimens. Anal. Quantum. Probab. Relat. Top, 21 (2018), no. 3, 1850015, 10 pp
The subject of the present paper is an application of quantum probability to $p$-adic objects. We give a quantum-probabilistic interpretation of the spherical Hecke algebra for ${\rm PGL}_2(F)$, where $F$ is a $p$-adic field. As a byproduct, we obtai
Externí odkaz:
http://arxiv.org/abs/1803.02217