Zobrazeno 1 - 10
of 125
pro vyhledávání: '"Sudarshan K. Sehgal"'
Publikováno v:
Algebras and Representation Theory. 23:457-466
Let G be a nonabelian nilpotent group and F a field of characteristic p > 2, such that the unit group \(\mathcal {U}(FG)\) of the group ring FG is solvable and G contains a p-element. Here we provide a lower bound for the derived length of \(\mathcal
Autor:
Gregory T. Lee, Sudarshan K. Sehgal
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
instname
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Let ${\mathbb Z}A$ be the integral group ring of a finite abelian group $A$, and $n$ a positive integer greater than 5. We provide conditions on $n$ and $A$ under which every torsion matrix $U$, with identity augmentation, in $GL_n({\mathbb Z}A)$ is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::78671a93b14f85ec4b1834b446fc1617
http://hdl.handle.net/2072/379947
http://hdl.handle.net/2072/379947
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let G be a group, F a field and FG the corresponding group algebra. We consider an involution on FG which is the linear extension of an involution of G, e.g., g * = g - 1 {g^{*}=g^{-1}} for g ∈ G {g\in G} . This paper is focused on the characteriza
Publikováno v:
Algebras and Representation Theory. 17:1597-1601
Let F be a field of characteristic p > 2 and G a nonabelian nilpotent group containing elements of order p. Write F G for the group ring. The conditions under which the unit group 𝒰(F G) is solvable are known, but only a few results have been prov
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let ⁎ be an involution of a group algebra FG induced by an involution of the group G. For char F ≠ 2 , we classify the groups G with no 2-elements and with no nonabelian dihedral groups involved whose Lie algebra of ⁎-skew elements is nilpotent
Publikováno v:
Journal of Pure and Applied Algebra. 213(6):1173-1178
Let F be a field of characteristic different from 2, and G a group with involution ∗ . Write ( F G ) + for the set of elements in the group ring F G that are symmetric with respect to the induced involution. Recently, Giambruno, Polcino Milies and
Publikováno v:
Sbornik: Mathematics. 199:965-983
Let R be a finite-dimensional algebra over an algebraically closed field F graded by an arbitrary group G. In the paper it is proved that if the characteristic of F is zero or does not divide the order of any finite subgroup of G, then R is graded si
Publikováno v:
Математический сборник. 199:21-40
Let G be a nonabelian free group with involution *. In the present note, we show that G satisfies a *-group identity if and only if * is the classical involution, given by \({g^\ast=g^{-1}}\) for all \({g \in G}\).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e935a2cbab5a82281a618d24a4d14475
http://hdl.handle.net/11573/768493
http://hdl.handle.net/11573/768493
Autor:
Sudarshan K. Sehgal, Ángel del Río
Publikováno v:
Archiv der Mathematik. 86:392-397
We prove a conjecture of Zassenhaus that every normalized torsion unit of the integral group ring ZG of a finite group G is rationally conjugate to a group element for some metabelian groups including metacyclic groups G containing a normal cyclic gr