Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Subresultant PRS"'
Given the polynomials f, g ∈ Z[x] the main result of our paper,Theorem 1, establishes a direct one-to-one correspondence between the modified Euclidean and Euclidean polynomial remainder sequences (prs’s) of f, gcomputed in Q[x], on one hand, and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68b4218eeb4a30d72e8b3656501760fc
https://hdl.handle.net/10525/2913
https://hdl.handle.net/10525/2913
In 1917 Pell (1) and Gordon used sylvester2, Sylvester’s littleknown and hardly ever used matrix of 1853, to compute(2)the coefficients of a Sturmian remainder — obtained in applying in Q[x], Sturm’s algorithm on two polynomials f, g ∈ Z[x] o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a3b65511274485f5655923d2a289602
https://hdl.handle.net/10525/2487
https://hdl.handle.net/10525/2487
In this paper we present two new methods for computing the subresultant polynomial remainder sequence (prs) of two polynomials f, g ∈ Z[x]. We are now able to also correctly compute the Euclidean and modified Euclidean prs of f, g by using either o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4d0ba75630ce88bcd72d66373e1f530b
https://hdl.handle.net/10525/2924
https://hdl.handle.net/10525/2924
Autor:
Sasaki, Tateaki, Furukawa, Akio
Publikováno v:
数理解析研究所講究録. 486:27-48
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.