Zobrazeno 1 - 10
of 156
pro vyhledávání: '"Subramaniam, L."'
Autor:
Neelam, Sumit, Sharma, Udit, Bhatia, Sumit, Karanam, Hima, Likhyani, Ankita, Abdelaziz, Ibrahim, Fokoue, Achille, Subramaniam, L. V.
Resource Description Framework (RDF) and Property Graph (PG) are the two most commonly used data models for representing, storing, and querying graph data. We present Expressive Reasoning Graph Store (ERGS) -- a graph store built on top of JanusGraph
Externí odkaz:
http://arxiv.org/abs/2209.05828
Autor:
Kannen, Nithish, Sharma, Udit, Neelam, Sumit, Khandelwal, Dinesh, Ikbal, Shajith, Karanam, Hima, Subramaniam, L Venkata
Knowledge Base Question Answering (KBQA) systems have the goal of answering complex natural language questions by reasoning over relevant facts retrieved from Knowledge Bases (KB). One of the major challenges faced by these systems is their inability
Externí odkaz:
http://arxiv.org/abs/2203.11054
Autor:
Neelam, Sumit, Sharma, Udit, Karanam, Hima, Ikbal, Shajith, Kapanipathi, Pavan, Abdelaziz, Ibrahim, Mihindukulasooriya, Nandana, Lee, Young-Suk, Srivastava, Santosh, Pendus, Cezar, Dana, Saswati, Garg, Dinesh, Fokoue, Achille, Bhargav, G P Shrivatsa, Khandelwal, Dinesh, Ravishankar, Srinivas, Gurajada, Sairam, Chang, Maria, Uceda-Sosa, Rosario, Roukos, Salim, Gray, Alexander, Lima, Guilherme, Riegel, Ryan, Luus, Francois, Subramaniam, L Venkata
Knowledge Base Question Answering (KBQA) tasks that involve complex reasoning are emerging as an important research direction. However, most existing KBQA datasets focus primarily on generic multi-hop reasoning over explicit facts, largely ignoring o
Externí odkaz:
http://arxiv.org/abs/2201.05793
Autor:
Neelam, Sumit, Sharma, Udit, Karanam, Hima, Ikbal, Shajith, Kapanipathi, Pavan, Abdelaziz, Ibrahim, Mihindukulasooriya, Nandana, Lee, Young-Suk, Srivastava, Santosh, Pendus, Cezar, Dana, Saswati, Garg, Dinesh, Fokoue, Achille, Bhargav, G P Shrivatsa, Khandelwal, Dinesh, Ravishankar, Srinivas, Gurajada, Sairam, Chang, Maria, Uceda-Sosa, Rosario, Roukos, Salim, Gray, Alexander, Riegel, Guilherme LimaRyan, Luus, Francois, Subramaniam, L Venkata
Knowledge Base Question Answering (KBQA) tasks that in-volve complex reasoning are emerging as an important re-search direction. However, most KBQA systems struggle withgeneralizability, particularly on two dimensions: (a) acrossmultiple reasoning ty
Externí odkaz:
http://arxiv.org/abs/2109.13430
Autor:
Subramaniam, L. Venkata1 qindia@cybermedia.co.in
Publikováno v:
Dataquest. Aug2024, Vol. 40 Issue 8, p36-38. 3p.
The hashtag recommendation problem addresses recommending (suggesting) one or more hashtags to explicitly tag a post made on a given social network platform, based upon the content and context of the post. In this work, we propose a novel methodology
Externí odkaz:
http://arxiv.org/abs/1712.01562
Researchers have attempted to model information diffusion and topic trends and lifecycle on online social networks. They have investigated the role of content, social connections and communities, familiarity and behavioral similarity in this context.
Externí odkaz:
http://arxiv.org/abs/1706.00921
The unprecedented use of social media through smartphones and other web-enabled mobile devices has enabled the rapid adoption of platforms like Twitter. Event detection has found many applications on the web, including breaking news identification an
Externí odkaz:
http://arxiv.org/abs/1405.1392
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.