Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Suárez, Fernando Trejos"'
Let $f(z) = \sum_{n=1}^\infty a_f(n)q^n$ be a holomorphic cuspidal newform with even integral weight $k\geq 2$, level $N$, trivial nebentypus, and no complex multiplication (CM). For all primes $p$, we may define $\theta_p\in [0,\pi]$ such that $a_f(
Externí odkaz:
http://arxiv.org/abs/2108.03520
Autor:
Bołdyriew, Elżbieta, Haviland, John, Lâm, Phúc, Lentfer, John, Miller, Steven J., Suárez, Fernando Trejos
A positive linear recurrence sequence (PLRS) is a sequence defined by a homogeneous linear recurrence relation with positive coefficients and a particular set of initial conditions. A sequence of positive integers is \emph{complete} if every positive
Externí odkaz:
http://arxiv.org/abs/2010.04071
Autor:
Bołdyriew, Elżbieta, Haviland, John, Lâm, Phúc, Lentfer, John, Miller, Steven J., Suárez, Fernando Trejos
A sequence of positive integers is complete if every positive integer is a sum of distinct terms. A positive linear recurrence sequence (PLRS) is a sequence defined by a homogeneous linear recurrence relation with nonnegative coefficients of the form
Externí odkaz:
http://arxiv.org/abs/2010.01655
Autor:
Boldyriew, Elzbieta, Kim, Elena, Miller, Steven J., Palsson, Eyvindur, Sovine, Sean, Suárez, Fernando Trejos, Zhao, Jason
The Erd\H{o}s distance problem concerns the least number of distinct distances that can be determined by $N$ points in the plane. The integer lattice with $N$ points is known as \textit{near-optimal}, as it spans $\Theta(N/\sqrt{\log(N)})$ distinct d
Externí odkaz:
http://arxiv.org/abs/2009.12450
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Quarterly Journal of Mathematics; Dec2022, Vol. 73 Issue 4, p1189-1225, 37p