Zobrazeno 1 - 10
of 159
pro vyhledávání: '"Sturm, Jacob"'
In this short note, we remove the small degeneracy assumption in our earlier works [10, 11]. This is achieved by a technical improvement of Corollary 5.1 in [10]. As a consequence, we establish the same geometric estimates for diameter, Green's funct
Externí odkaz:
http://arxiv.org/abs/2405.18280
We establish a uniform Sobolev inequality for K\"ahler metrics, which only require an entropy bound and no lower bound on the Ricci curvature. We further extend our Sobolev inequality to singular K\"ahler metrics on K\"ahler spaces with normal singul
Externí odkaz:
http://arxiv.org/abs/2311.00221
Diameter estimates for K\"ahler metrics are established which require only an entropy bound and no lower bound on the Ricci curvature. The proof builds on recent PDE techniques for $L^\infty$ estimates for the Monge-Amp\`ere equation, with a key impr
Externí odkaz:
http://arxiv.org/abs/2209.09428
The moment map $\mu$ is a central concept in the study of Hamiltonian actions of compact Lie groups $K$ on symplectic manifolds. In this short note, we propose a theory of moment maps coupled with an $\mathrm{Ad}_K$-invariant convex function $f$ on $
Externí odkaz:
http://arxiv.org/abs/2208.03724
Uniform $L^1$ and lower bounds are obtained for the Green's function on compact K\"ahler manifolds. Unlike in the classic theorem of Cheng-Li for Riemannian manifolds, the lower bounds do not depend directly on the Ricci curvature, but only on integr
Externí odkaz:
http://arxiv.org/abs/2202.04715
The stable reduction theorem says that a family of curves of genus $g\geq 2$ over a punctured curve can be uniquely completed (after possible base change) by inserting certain stable curves at the punctures. We give a new proof of this result for cur
Externí odkaz:
http://arxiv.org/abs/2009.13596
Let $\mathcal{M}_{\rm KSB}$ (resp. $\mathcal{M}_{\rm KSB}'$) be the the moduli space of $n$-dimensional K\"ahler-Einstein manifolds (resp. varieties) $X$ with $K_X$ ample. We prove that the Weil-Petersson metric on $\mathcal{M}_{\rm KSB}$ extends uni
Externí odkaz:
http://arxiv.org/abs/2008.11215
Let $\mathcal{K}(n, V)$ be the set of $n$-dimensional compact Kahler-Einstein manifolds $(X, g)$ satisfying $Ric(g)= - g$ with volume bounded above by $V$. We prove that after passing to a subsequence, any sequence $\{ (X_j, g_j)\}_{j=1}^\infty$ in $
Externí odkaz:
http://arxiv.org/abs/2003.04709
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A short proof of the convergence of the Kahler-Ricci flow on Fano manifolds admitting a Kahler-Einstein metric or a Kahler-Ricci soliton is given, using a variety of recent techniques
Externí odkaz:
http://arxiv.org/abs/2001.06329