Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Stuner, Bruno"'
Autor:
Stuner, Bruno
Les méthodes à l’état de l’art de la reconnaissance de l’écriture sont fondées sur des réseaux de neurones récurrents (RNN) à cellules LSTM ayant des performances remarquables. Dans cette thèse, nous proposons deux nouveaux principes l
Externí odkaz:
http://www.theses.fr/2018NORMR024
Offline handwritten text line recognition is a hard task that requires both an efficient optical character recognizer and language model. Handwriting recognition state of the art methods are based on Long Short Term Memory (LSTM) recurrent neural net
Externí odkaz:
http://arxiv.org/abs/1707.07432
State-of-the-art methods for handwriting recognition are based on Long Short Term Memory (LSTM) recurrent neural networks (RNN), which now provides very impressive character recognition performance. The character recognition is generally coupled with
Externí odkaz:
http://arxiv.org/abs/1612.07528
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ICFHR
2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)
2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Oct 2016, Shenzhen, China. pp.234-239, ⟨10.1109/ICFHR.2016.0053⟩
2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)
2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Oct 2016, Shenzhen, China. pp.234-239, ⟨10.1109/ICFHR.2016.0053⟩
International audience; Handwriting recognition always has been a difficult problem, with image related problems on the one hand and language processing on the other hand. Significant improvements have been made in handwriting recognition thanks to n