Zobrazeno 1 - 10
of 386
pro vyhledávání: '"Stull, A. M."'
Autor:
Fiedler, Jacob B., Stull, D. M.
We investigate variants of Marstrand's projection theorem that hold for sets of directions and classes of sets in $\mathbb{R}^2$. We say that a set of directions $D \subseteq\mathcal{S}^1$ is $\textit{universal}$ for a class of sets if, for every set
Externí odkaz:
http://arxiv.org/abs/2411.16001
Autor:
Cholak, Peter, Csornyei, Marianna, Lutz, Neil, Lutz, Patrick, Mayordomo, Elvira, Stull, D. M.
It is well known that if $A\subseteq\R^n$ is an analytic set of Hausdorff dimension $a$, then $\dim_H(\pi_VA)=\min\{a,k\}$ for a.e. $V\in G(n,k)$, where $\pi_V$ is the orthogonal projection of $A$ onto $V$. In this paper we study how large the except
Externí odkaz:
http://arxiv.org/abs/2411.04959
Autor:
Fiedler, Jacob B., Stull, D. M.
In this paper, we give improved bounds on the Hausdorff dimension of pinned distance sets of planar sets with dimension strictly less than one. As the planar set becomes more regular (i.e., the Hausdorff and packing dimension become closer), our lowe
Externí odkaz:
http://arxiv.org/abs/2408.00889
Autor:
Fiedler, Jacob B., Stull, D. M.
We prove that if $E\subseteq \R^2$ is analytic and $1
Externí odkaz:
http://arxiv.org/abs/2309.11701
Autor:
Eaton-Stull, Yvonne M1 yvonne.eaton-stull@sru.edu, Streidl, Christopher2, Jaffe, Batya G3, Kuehn, Sarah4, Kaufman, Alexandra5
Publikováno v:
Health & Social Work. Nov2024, Vol. 49 Issue 4, p219-226. 8p.
Autor:
Stull, D. M.
In this paper, we use algorithmic tools, effective dimension and Kolmogorov complexity, to study the fractal dimension of distance sets. We show that, for any analytic set $E\subseteq\R^2$ of Hausdorff dimension strictly greater than one, the \textit
Externí odkaz:
http://arxiv.org/abs/2207.12501
Autor:
Stull, Carolyn M., Clark, Denise, Parker, Tayler, Idriss, Munir H., Patel, Vishal A., Migden, Michael R.
Publikováno v:
In Journal of the American Academy of Dermatology November 2024 91(5):910-921
Publikováno v:
In Cancer Letters 1 May 2024 589
Autor:
Stull, D. M.
Let $L_{a,b}$ be a line in the Euclidean plane with slope $a$ and intercept $b$. The dimension spectrum $\spec(L_{a,b})$ is the set of all effective dimensions of individual points on $L_{a,b}$. The dimension spectrum conjecture states that, for ever
Externí odkaz:
http://arxiv.org/abs/2102.00134
Autor:
Stull, D. M.
The point-to-set principle \cite{LutLut17} characterizes the Hausdorff dimension of a subset $E\subseteq\R^n$ by the \textit{effective} (or algorithmic) dimension of its individual points. This characterization has been used to prove several results
Externí odkaz:
http://arxiv.org/abs/2101.11152