Zobrazeno 1 - 10
of 174
pro vyhledávání: '"Strzelecki, Michal"'
Autor:
Strzelecki, Michał
The operators $\Lambda_m$ ($m\in\mathbb{N}\cup \{0\}$) arise when one studies the action of the Beurling-Ahlfors transform on certain radial function subspaces. It is known that the weak-type $(1,1)$ constant of $\Lambda_0$ is equal to $1/\ln(2)\appr
Externí odkaz:
http://arxiv.org/abs/2411.09340
Publikováno v:
Math. Ann. 388 (2024), no. 4, 3463-3527
For $m,n\in\mathbb{N}$ let $X=(X_{ij})_{i\leq m,j\leq n}$ be a random matrix, $A=(a_{ij})_{i\leq m,j\leq n}$ a real deterministic matrix, and $X_A=(a_{ij}X_{ij})_{i\leq m,j\leq n}$ the corresponding structured random matrix. We study the expected ope
Externí odkaz:
http://arxiv.org/abs/2112.14413
Autor:
Prochno, Joscha, Strzelecki, Michał
Publikováno v:
J. Approx. Theory 277 (2022), 105736, 33 pp
Let $0
Externí odkaz:
http://arxiv.org/abs/2103.13050
Publikováno v:
J. Funct. Anal. 282 (2022), no. 7, 109349, 76 pp
We prove that in the context of general Markov semigroups Beckner inequalities with constants separated from zero as $p\to 1^+$ are equivalent to the modified log Sobolev inequality (previously only one implication was known to hold in this generalit
Externí odkaz:
http://arxiv.org/abs/2007.10209
Autor:
Nurzynska, Karolina, Piórkowski, Adam, Strzelecki, Michał, Kociołek, Marcin, Banyś, Robert Paweł, Obuchowicz, Rafał
Publikováno v:
In Biocybernetics and Biomedical Engineering January-March 2024 44(1):20-30
Autor:
Barthe, Franck, Strzelecki, Michal
Publikováno v:
Potential Anal. 56 (2022), 669-696
Probability measures satisfying a Poincar{\'e} inequality are known to enjoy a dimension free concentration inequality with exponential rate. A celebrated result of Bobkov and Ledoux shows that a Poincar{\'e} inequality automatically implies a modifi
Externí odkaz:
http://arxiv.org/abs/1910.01342
Autor:
Strzelecki, Michał
Publikováno v:
J. Funct. Anal. 279 (2020), no. 2, 108532, 34 pp
Let $H$ be the Hardy operator and $I$ the identity operator acting on functions on the real half-line. We find optimal bounds for the operator $H - I$ in the setting of power weights and the cases of positive decreasing functions, positive functions,
Externí odkaz:
http://arxiv.org/abs/1909.04780
Publikováno v:
Electron. J. Probab. 24 (2019), paper no. 42, 1-22
We present precise multilevel exponential concentration inequalities for polynomials in Ising models satisfying the Dobrushin condition. The estimates have the same form as two-sided tail estimates for polynomials in Gaussian variables due to Lata{\l
Externí odkaz:
http://arxiv.org/abs/1809.03187
Autor:
Prochno, Joscha, Strzelecki, Michał
Publikováno v:
In Journal of Approximation Theory May 2022 277
Autor:
Adamczak, Radosław, Strzelecki, Michał
Publikováno v:
Bernoulli 25 (2019), 341-374
We prove that for a probability measure on $\mathbb{R}^n$, the Poincar\'e inequality for convex functions is equivalent to the weak transportation inequality with a quadratic-linear cost. This generalizes recent results by Gozlan et al. and Feldheim
Externí odkaz:
http://arxiv.org/abs/1703.01765