Zobrazeno 1 - 10
of 199
pro vyhledávání: '"Strzelecki, Michał"'
For $m,n\in\mathbb{N}$ let $X=(X_{ij})_{i\leq m,j\leq n}$ be a random matrix, $A=(a_{ij})_{i\leq m,j\leq n}$ a real deterministic matrix, and $X_A=(a_{ij}X_{ij})_{i\leq m,j\leq n}$ the corresponding structured random matrix. We study the expected ope
Externí odkaz:
http://arxiv.org/abs/2112.14413
Autor:
Strzelecki, Michał, Kociołek, Marcin, Strąkowska, Maria, Kozłowski, Michał, Grzybowski, Andrzej, Szczypiński, Piotr M.
Publikováno v:
In Clinics in Dermatology May-June 2024 42(3):280-295
Autor:
Prochno, Joscha, Strzelecki, Michał
Publikováno v:
J. Approx. Theory 277 (2022), 105736, 33 pp
Let $0
Externí odkaz:
http://arxiv.org/abs/2103.13050
Autor:
Nurzynska, Karolina, Piórkowski, Adam, Strzelecki, Michał, Kociołek, Marcin, Banyś, Robert Paweł, Obuchowicz, Rafał
Publikováno v:
In Biocybernetics and Biomedical Engineering January-March 2024 44(1):20-30
Autor:
Obuchowicz, Rafał1 (AUTHOR) rafalobuchowicz@su.krakow.pl, Strzelecki, Michał2 (AUTHOR) michal.strzelecki@p.lodz.pl, Piórkowski, Adam3 (AUTHOR)
Publikováno v:
Cancers. May2024, Vol. 16 Issue 10, p1870. 16p.
Publikováno v:
J. Funct. Anal. 282 (2022), no. 7, 109349, 76 pp
We prove that in the context of general Markov semigroups Beckner inequalities with constants separated from zero as $p\to 1^+$ are equivalent to the modified log Sobolev inequality (previously only one implication was known to hold in this generalit
Externí odkaz:
http://arxiv.org/abs/2007.10209
Autor:
Barthe, Franck, Strzelecki, Michal
Publikováno v:
Potential Anal. 56 (2022), 669-696
Probability measures satisfying a Poincar{\'e} inequality are known to enjoy a dimension free concentration inequality with exponential rate. A celebrated result of Bobkov and Ledoux shows that a Poincar{\'e} inequality automatically implies a modifi
Externí odkaz:
http://arxiv.org/abs/1910.01342
Autor:
Strzelecki, Michał
Publikováno v:
J. Funct. Anal. 279 (2020), no. 2, 108532, 34 pp
Let $H$ be the Hardy operator and $I$ the identity operator acting on functions on the real half-line. We find optimal bounds for the operator $H - I$ in the setting of power weights and the cases of positive decreasing functions, positive functions,
Externí odkaz:
http://arxiv.org/abs/1909.04780
Publikováno v:
Electron. J. Probab. 24 (2019), paper no. 42, 1-22
We present precise multilevel exponential concentration inequalities for polynomials in Ising models satisfying the Dobrushin condition. The estimates have the same form as two-sided tail estimates for polynomials in Gaussian variables due to Lata{\l
Externí odkaz:
http://arxiv.org/abs/1809.03187
Autor:
Prochno, Joscha, Strzelecki, Michał
Publikováno v:
In Journal of Approximation Theory May 2022 277