Zobrazeno 1 - 10
of 153
pro vyhledávání: '"Straube, Emil"'
Autor:
Straube, Emil J.
Let $\Omega$ be a smooth bounded pseudoconvex domain in $\mathbb{C}^{n}$. It is shown that for $0\leq q\leq n$, $s\geq 0$, the embedding $j_{q}: dom(\overline{\partial})\cap dom(\overline{\partial}^{*}) \hookrightarrow L^{2}_{(0,q)}(\Omega)$ is conti
Externí odkaz:
http://arxiv.org/abs/2410.09996
We construct a family of subdistributions of the Levi core $\mathfrak{C}(\mathcal{N})$ called modified Levi cores $\{\mathcal{M}\mathfrak{C}_{\mathcal{A}}\}_{\mathcal{A}}$ indexed over closed distributions $\mathcal{A}$ that contain the Levi null dis
Externí odkaz:
http://arxiv.org/abs/2308.14807
Autor:
Liu, Bingyuan, Straube, Emil J.
Let $\Omega$ be a smooth bounded pseudoconvex domain in $\mathbb{C}^{n}$. Let $1\leq q_{0}\leq (n-1)$. We show that if $q_{0}$--sums of eigenvalues of the Levi form are comparable, then if the Diederich--Forn\ae ss index of $\Omega$ is $1$, the $\ove
Externí odkaz:
http://arxiv.org/abs/2207.14197
Publikováno v:
J. Operator Theory 89 (2023), no. 1, 75-85
Let $\Omega$ be a bounded convex domain in $\mathbb{C}^{n}$. We show that if $\varphi \in C^{1}(\overline{\Omega})$ is holomorphic along analytic varieties in $b\Omega$, then $H^{q}_{\varphi}$, the Hankel operator with symbol $\varphi$, is compact. W
Externí odkaz:
http://arxiv.org/abs/2011.02656
Publikováno v:
Houston J. Math. 46 (2020), no. 4, 1005-1016
Let $\Omega$ be a bounded convex domain in $\mathbb{C}^{n}$, $n\geq 2$, $1\leq q\leq (n-1)$, and $\phi\in C(\bar{\Omega})$. If the Hankel operator $H^{q-1}_{\phi}$ on $(0,q-1)$--forms with symbol $\phi$ is compact, then $\phi$ is holomorphic along $q
Externí odkaz:
http://arxiv.org/abs/2005.14323
Publikováno v:
Proc. Amer. Math. Soc. 148 (2020), no. 2, 751-764
Let $1\leq q\leq (n-1)$. We first show that a necessary condition for a Hankel operator on $(0,q-1)$-forms on a convex domain to be compact is that its symbol is holomorphic along $q$-dimensional analytic varieties in the boundary. Because maximal es
Externí odkaz:
http://arxiv.org/abs/1902.10316
Autor:
Biard, Séverine, Straube, Emil J.
Let $M$ be a pseudoconvex, oriented, bounded and closed CR submanifold of $\mathbb{C}^{n}$ of hypersurface type. We show that Sobolev estimates for the complex Green operator hold simultaneously for forms of symmetric bidegrees, that is, they hold fo
Externí odkaz:
http://arxiv.org/abs/1704.04212
Autor:
Biard, Séverine, Straube, Emil J.
These notes are concerned with the $L^{2}$-Sobolev theory of the complex Green operator on pseudoconvex, oriented, bounded and closed CR--submanifolds of $\mathbb{C}^{n}$ of hypersurface type. This class of submanifolds generalizes that of boundaries
Externí odkaz:
http://arxiv.org/abs/1606.00728
Autor:
Ayyürü, Mustafa, Straube, Emil J.
Assume that $\Omega_{1}$ and $\Omega_{2}$ are two smooth bounded pseudoconvex domains in $\mathbb{C}^{2}$ that intersect (real) transversely, and that $\Omega_{1} \cap \Omega_{2}$ is a domain (i.e. is connected). If the $\overline{\partial}$-Neumann
Externí odkaz:
http://arxiv.org/abs/1408.6134
Autor:
Straube, Emil J., Zeytuncu, Yunus E.
Let $M$ be a pseudoconvex, oriented, bounded and closed CR submanifold of $\mathbb{C}^{n}$ of hypersurface type. Our main result says that when a certain $1$-form on $M$ is exact on the null space of the Levi form, then the complex Green operator on
Externí odkaz:
http://arxiv.org/abs/1311.4208