Zobrazeno 1 - 10
of 76
pro vyhledávání: '"Strachan, I.A.B."'
Autor:
Bridgeland, T., Strachan, I.A.B.
The notion of a Joyce structure was introduced in Bridgeland (Geometry from Donaldson–Thomas invariants, preprint arXiv:1912.06504) to describe the geometric structure on the space of stability conditions of a CY3 category naturally encoded by the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=core_ac_uk__::18148ad626002a48a2f02523dee89496
Autor:
Strachan, I.A.B.
Publikováno v:
In Differential Geometry and its Applications 2004 20(1):67-99
Autor:
Strachan, I.A.B. *
Publikováno v:
In Journal of Geometry and Physics 2001 38(3):285-307
Autor:
Speight, J.M. a, Strachan, I.A.B. b
Publikováno v:
In Physics Letters B 1999 457(1):17-22
Autor:
Strachan, I.A.B.
A functional ansatz is developed which gives certain elliptic solutions of the Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV) equations. This ansatz is based on the elliptic trilogarithm function introduced by Beilinson and Levin. For this to be a solu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=core_ac_uk__::34cf7b83b3f045a90f2aeaaf98c7307a
https://eprints.gla.ac.uk/43018/1/43018.pdf
https://eprints.gla.ac.uk/43018/1/43018.pdf
Autor:
Ferguson, J., Strachan, I.A.B.
The superpotential in the Landau-Ginzburg construction of solutions to the Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV) equations is modified to include logarithmic terms. This results in deformations - quadratic in the deformation parameters- of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=core_ac_uk__::b783fd58e0825a5a54f93b09b66d761e
https://eprints.gla.ac.uk/25290/1/25290.pdf
https://eprints.gla.ac.uk/25290/1/25290.pdf
We use deformations of Lie algebra homomorphisms to construct deformations of dispersionless integrable systems arising as symmetry reductions of anti-self-dual Yang-Mills equations with a gauge group Diff(S1).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=core_ac_uk__::b9c7f1ccfbc13f452bcd06bf4aaebeaa
https://eprints.gla.ac.uk/13328/1/arxiv.html
https://eprints.gla.ac.uk/13328/1/arxiv.html
Autor:
Riley, A., Strachan, I.A.B.
Legendre transformations provide a natural symmetry on the space of solutions to the WDVV equations, and more specifically, between different Frobenius manifolds. In this paper a twisted Legendre transformation is constructed between solutions which
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=core_ac_uk__::ba49a981ffe930bdc3f5a74173c2a38c
https://eprints.gla.ac.uk/13279/1/13279.pdf
https://eprints.gla.ac.uk/13279/1/13279.pdf
Autor:
Riley, A., Strachan, I.A.B.
From any given Frobenius manifold one may construct a so-called ’dual’ structure which, while not satisfying the full axioms of a Frobenius manifold, shares many of its essential features, such as the existence of a prepotential satisfying the Wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=core_ac_uk__::6de7be11b3e2824f4a56a86a0d9ce611
https://eprints.gla.ac.uk/13157/1/arxiv.html
https://eprints.gla.ac.uk/13157/1/arxiv.html
Autor:
David, L., Strachan, I.A.B.
The structure of a Frobenius manifold encodes the geometry associated with a flat pencil of metrics. However, as shown in the authors’ earlier work [L. David, I.A.B. Strachan, Compatible metrics on manifolds and non-local bi-Hamiltoninan structures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=core_ac_uk__::8cdb9b508152b71b56ba3f58e2464ffa
https://eprints.gla.ac.uk/13194/1/arxiv.html
https://eprints.gla.ac.uk/13194/1/arxiv.html