Zobrazeno 1 - 10
of 564
pro vyhledávání: '"Stoyanova M."'
We derive universal lower and upper bounds for max-min and min-max problems (also known as polarization) for the potential of spherical $(k,k)$-designs and provide certain examples, including unit-norm tight frames, that attain these bounds. The univ
Externí odkaz:
http://arxiv.org/abs/2411.00290
Publikováno v:
Acta Medica Bulgarica, Vol 47, Iss 4, Pp 24-30 (2020)
Background: Data on the clinical characteristics of premenstrual syndrome (PMS) with co-morbid major depressive disorder (MDD) are scarce. Although selective serotonin re-uptake inhibitors (SSRIs) are widely used to treat both PMS and MDD there is li
Externí odkaz:
https://doaj.org/article/095ebc5f28aa4dba9c2aa350974659ce
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We develop a framework for obtaining linear programming bounds for spherical codes whose inner products belong to a prescribed subinterval $[\ell,s]$ of $[-1,1)$. An intricate relationship between Levenshtein-type upper bounds on cardinality of codes
Externí odkaz:
http://arxiv.org/abs/1801.07334
Publikováno v:
In Engineering Science and Technology, an International Journal September 2022 33
Autor:
Kocheva, D., Rainovski, G., Jolie, J., Pietralla, N., Blazhev, A., Astier, A., Braunroth, Th., Cortés, M. L., Dewald, A., Djongolov, M., Fransen, C., Gladnishki, K., Hennig, A., Karayonchev, V., Keatings, J. M., Litzinger, J., Müller-Gatermann, C., Petkov, P., Scheck, M., Spagnoletti, P., Scholz, Ph., Stahl, C., Stegmann, R., Stoyanova, M., Thöle, P., Warr, N., Werner, V., Witt, W., Wölk, D., Zell, K. O., Van Isacker, P., Ponomarev, V. Yu.
The lifetimes of the $2^+_1$, the $2^+_2$ and the $3^-_1$ states of $^{210}$Po have been measured in the $^{208}$Pb($^{12}$C,$^{10}$Be)$^{210}$Po transfer reaction by the Doppler-shift attenuation method. The results for the lifetime of the $2^+_1$ s
Externí odkaz:
http://arxiv.org/abs/1706.04495
Linear programming (polynomial) techniques are used to obtain lower and upper bounds for the potential energy of spherical designs. This approach gives unified bounds that are valid for a large class of potential functions. Our lower bounds are optim
Externí odkaz:
http://arxiv.org/abs/1509.07837
We derive and investigate lower bounds for the potential energy of finite spherical point sets (spherical codes). Our bounds are optimal in the following sense -- they cannot be improved by employing polynomials of the same or lower degrees in the De
Externí odkaz:
http://arxiv.org/abs/1503.07228
Autor:
LACHEVA, M.1 agaricus@mail.bg, STOYANOVA, M.2
Publikováno v:
Oxidation Communications. 2022, Vol. 45 Issue 2, p289-299. 11p.