Zobrazeno 1 - 10
of 7 899
pro vyhledávání: '"Stokes, K. A."'
Publikováno v:
In Journal of Computational Physics 15 March 2018 357:353-374
Autor:
Srimanta Maji, Akshaya K. Sahu
Publikováno v:
SN Applied Sciences, Vol 3, Iss 5, Pp 1-16 (2021)
Abstract In the present study, simulation of a stirred tank using axial flow impeller has been studied numerically to see the behaviour of flow variables in the entire vessel. It is assumed that the flow is steady state, two dimensional, incompressib
Externí odkaz:
https://doaj.org/article/8122cfdc735f483d8b7518ddf8f56fe3
Publikováno v:
In Journal of Computational Physics 15 September 2017 345:111-131
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
F. Chedevergne
Publikováno v:
Journal of Turbulence
Journal of Turbulence, Taylor & Francis, 2021, 22 (11), pp.713-734. ⟨10.1080/14685248.2021.1973014⟩
Journal of Turbulence, Taylor & Francis, 2021, 22 (11), pp.713-734. ⟨10.1080/14685248.2021.1973014⟩
International audience; The discrete element (roughness) method developed a few decades ago is revisited using the double averaging technique applied to the Navier-Stokes equation. A k − ω based DANS turbulence model is thus derived to be able to
Autor:
Akshaya K. Sahu, Srimanta Maji
Publikováno v:
SN Applied Sciences, Vol 3, Iss 5, Pp 1-16 (2021)
In the present study, simulation of a stirred tank using axial flow impeller has been studied numerically to see the behaviour of flow variables in the entire vessel. It is assumed that the flow is steady state, two dimensional, incompressible and ax
Publikováno v:
Journal of Computational Physics. 357:353-374
This paper presents a data-driven computational model for simulating unsteady turbulent flows, where sparse measurement data is available. The model uses the retrospective cost adaptation (RCA) algorithm to automatically adjust the closure coefficien
Publikováno v:
Journal of Computational Physics. 345:111-131
This paper presents a new data-driven adaptive computational model for simulating turbulent flow, where partial-but-incomplete measurement data is available. The model automatically adjusts the closure coefficients of the Reynolds-averaged Navier–S
Autor:
Li, Zhiyong
The data-driven adaptive algorithms are explored as a means of increasing the accuracy of Reynolds-averaged turbulence models. This dissertation presents two new data-driven adaptive computational models for simulating turbulent flow, where partial-b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d33ac26e2de536fe8769359fef331cc2
Autor:
Henke, W.
Publikováno v:
Zeitschrift für Morphologie und Anthropologie, 1979 Oct 01. 70(2), 240-240.
Externí odkaz:
https://www.jstor.org/stable/25756424