Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Stojanoska, Vesna"'
Autor:
Bobkova, Irina, Lachmann, Andrea, Li, Ang, Lima, Alicia, Stojanoska, Vesna, Zhang, Adela YiYu
In this paper, we bound the descent filtration of the exotic Picard group $\kappa_n$, for a prime number p>3 and n=p-1. Our method involves a detailed comparison of the Picard spectral sequence, the homotopy fixed point spectral sequence, and an auxi
Externí odkaz:
http://arxiv.org/abs/2403.15572
Autor:
Beaudry, Agnes, Bobkova, Irina, Goerss, Paul G., Henn, Hans-Werner, Pham, Viet-Cuong, Stojanoska, Vesna
We calculate the group $\kappa_2$ of exotic elements in the $K(2)$-local Picard group at the prime $2$ and find it is a group of order $2^9$ isomorphic to $(\mathbb{Z}/8)^2 \times (\mathbb{Z}/2)^3$. In order to do this we must define and exploit a va
Externí odkaz:
http://arxiv.org/abs/2212.07858
Autor:
Beaudry, Agnes, Bobkova, Irina, Goerss, Paul G., Henn, Hans-Werner, Pham, Viet-Cuong, Stojanoska, Vesna
We compute the continuous cohomology of the Morava stabilizer group with coefficients in Morava $E$-theory, $H^*(\mathbb{G}_2, E_t)$, at $p=2$, for $0\leq t < 12$, using the Algebraic Duality Spectral Sequence. Furthermore, in that same range, we com
Externí odkaz:
http://arxiv.org/abs/2210.15994
We prove that the Brauer group of TMF is isomorphic to the Brauer group of the derived moduli stack of elliptic curves. Then, we compute the local Brauer group, i.e., the subgroup of the Brauer group of elements trivialized by some \'etale cover of t
Externí odkaz:
http://arxiv.org/abs/2210.15743
The primary goal of this paper is to study Spanier-Whitehead duality in the $K(n)$-local category. One of the key players in the $K(n)$-local category is the Lubin-Tate spectrum $E_n$, whose homotopy groups classify deformations of a formal group law
Externí odkaz:
http://arxiv.org/abs/2010.09518
Publikováno v:
Algebr. Geom. Topol. 20 (2020) 3423-3503
We compute the Picard group of the category of $K(2)$-local module spectra over the ring spectrum $E^{hC_4}$, where $E$ is a height 2 Morava $E$-theory and $C_4$ is a subgroup of the associated Morava stabilizer group. This group can be identified wi
Externí odkaz:
http://arxiv.org/abs/1901.02109
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Following an idea of Hopkins, we construct a model of the determinant sphere $S\langle det \rangle$ in the category of $K(n)$-local spectra. To do this, we build a spectrum which we call the Tate sphere $S(1)$. This is a $p$-complete sphere with a na
Externí odkaz:
http://arxiv.org/abs/1810.06651
Publikováno v:
Trans. Amer. Math. Soc., Volume 372, Number 5, 1 September 2019, Pages 3347-3368
We determine the Gross-Hopkins duals of certain higher real $K$-theory spectra. More specifically, let $p$ be an odd prime, and consider the Morava $E$-theory spectrum of height $n=p-1$. It is known, in the expert circles, that for certain finite sub
Externí odkaz:
http://arxiv.org/abs/1705.07036
We establish a formal framework for Rognes's homotopical Galois theory and adapt it to the context of motivic spaces and spectra. We discuss examples of Galois extensions between Eilenberg-MacLane motivic spectra and between the Hermitian and algebra
Externí odkaz:
http://arxiv.org/abs/1611.00382