Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Stoimenov, Stoimen"'
Autor:
Henkel, Malte, Stoimenov, Stoimen
Publikováno v:
Nucl. Phys. B997, 116379 (2023)
The dynamical scaling and ageing in the relaxational dynamics of the quenched directed spherical model is analysed. The exact two-time correlation and response functions display new regimes of ballistic or anisotropic ballistic scaling, at larger dis
Externí odkaz:
http://arxiv.org/abs/2305.18155
Autor:
Stoimenov, Stoimen, Henkel, Malte
Publikováno v:
Nucl. Phys. B985, 116020 (2022)
The Meta-Schr\"odinger algebra arises as the dynamical symmetry in transport processes which are ballistic in a chosen `parallel' direction and diffusive and all other `transverse' directions. The time-space transformations of this Lie algebra and it
Externí odkaz:
http://arxiv.org/abs/2112.14143
Publikováno v:
J. Phys. A Math. Theor. 53, 475001 (2020)
Meta-conformal invariance is a novel class of dynamical symmetries, with dynamical exponent $z=1$, and distinct from the standard ortho-conformal invariance. The meta-conformal Ward identities can be directly read off from the Lie algebra generators,
Externí odkaz:
http://arxiv.org/abs/2006.04537
Autor:
Henkel, Malte, Stoimenov, Stoimen
Publikováno v:
J. Stat. Mech. 084009 (2019)
Meta-conformal transformations are constructed as sets of time-space transformations which are not angle-preserving but contain time- and space translations, time-space dilatations with dynamical exponent ${z}=1$ and whose Lie algebras contain confor
Externí odkaz:
http://arxiv.org/abs/1810.09855
Autor:
Henkel, Malte, Stoimenov, Stoimen
Meta-conformal transformations are constructed as dynamical symmetries of the linear transport equation in $d$ spatial dimensions. In one and two dimensions, the associated Lie algebras are infinite-dimensional and isomorphic to the direct sum of eit
Externí odkaz:
http://arxiv.org/abs/1711.05062
Autor:
Henkel, Malte, Stoimenov, Stoimen
Publikováno v:
J. Phys. A: Math. Theor. 49, 47LT01 (2016)
The covariant two-point functions, derived from Ward identities in direct space, can be affected by consistency problems and can become unbounded for large time- or space-separations. This difficulty arises for several extensions of dynamical scaling
Externí odkaz:
http://arxiv.org/abs/1607.00685
Autor:
Stoimenov, Stoimen, Henkel, Malte
Publikováno v:
Symmetry 7, 1595-1612 (2015)
Dynamical symmetries of the collisionless Boltzmann transport equation, or Vlasov equation, but under the influence of an external driving force, are derived from non-standard representations of the $2D$ conformal algebra. In the case without externa
Externí odkaz:
http://arxiv.org/abs/1509.00434
Autor:
Stoimenov, Stoimen, Henkel, Malte
Publikováno v:
Springer Proc. Math. Stat. 111, 527 (2015)
Non-local representations of the ageing algebra for generic dynamical exponents $z$ and for any space dimension $d\geq 1$ are constructed. The mechanism for the closure of the Lie algebra is explained. The Lie algebra generators contain higher-order
Externí odkaz:
http://arxiv.org/abs/1402.3338
Autor:
Henkel, Malte, Stoimenov, Stoimen
Publikováno v:
Springer Proc. Math. Stat. 111, 33 (2015)
Indecomposable but reducible representations of several Lie algebras of local scale-transformations, including the Schr\"odinger and conformal Galilean algebras, and some of their applications in physical ageing are reviewed. The physical requirement
Externí odkaz:
http://arxiv.org/abs/1401.6086
Autor:
Stoimenov, Stoimen, Henkel, Malte
Publikováno v:
J. Phys A: Math. Theor. 46, 245004 (2013)
The ageing Lie algebra age(d) and especially its local representations for a dynamical exponent z=2 has played an important r\^ole in the description of systems undergoing simple ageing, after a quench from a disordered state to the low-temperature p
Externí odkaz:
http://arxiv.org/abs/1212.6156