Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Stoffer, Daniel"'
Autor:
Stoffer, Daniel, Kirchgraber, Urs
Publikováno v:
In Applied Numerical Mathematics 2001 39(3):415-433
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 November 2000 251(2):897-911
Autor:
Stoffer, Daniel1 (AUTHOR) stoffer@math.ethz.ch
Publikováno v:
Dynamical Systems: An International Journal. Jun2011, Vol. 26 Issue 2, p169-188. 20p. 5 Graphs.
Autor:
Hairer, Ernst, Stoffer, Daniel
Publikováno v:
SIAM Journal on Scientific Computing. 1997, Vol. 18 Issue 1, p257. 13p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nipp, Kaspar, Stoffer, Daniel
In this book dynamical systems are investigated from a geometric viewpoint. Admitting an invariant manifold is a strong geometric property of a dynamical system. This text presents rigorous results on invariant manifolds and gives examples of possibl
Autor:
Nipp, Kaspar, Stoffer, Daniel
Publikováno v:
SAM Research Report, 1995-03
It is shown that appropriate linear multi-step methods (LMMs) applied to singularly perturbed systems of ODEs preserve the geometric properties of the underlying ODE. If the ODE admits an attractive invariant manifold so does the LMM. The continuous
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::31ac552e78378c0ec8d3bcd68994d37b
Autor:
Nipp, Kaspar, Stoffer, Daniel
Publikováno v:
SAM Research Report, 1992-14
For implicit RK-methods applied to singularly perturbed systems of ODEs it is shown that the resulting discrete systems preserve the geometric properties of the underlying ODE. As an application of this invariant manifold result sharp bounds on the g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e0ef92821478b16968ef724e56638dc
https://hdl.handle.net/20.500.11850/146090
https://hdl.handle.net/20.500.11850/146090
Autor:
Nipp, Kaspar, Stoffer, Daniel
Publikováno v:
SAM Research Report, 1992-11
A global invariant manifold result for maps is derived with conditions that are easy to verify for applications. The result supplies existence and smoothness of the attractive manifold as well as additional useful properties. It is also shown that a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3a4b7727afc033cf9d3973b6ab94ade8
https://hdl.handle.net/20.500.11850/145746
https://hdl.handle.net/20.500.11850/145746