Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Stochastic epidemiological models"'
Publikováno v:
Mathematical Biosciences and Engineering, Vol 20, Iss 2, Pp 4128-4152 (2023)
This paper offers a qualitative insight into the convergence of Bayesian parameter inference in a setup which mimics the modeling of the spread of a disease with associated disease measurements. Specifically, we are interested in the Bayesian model's
Externí odkaz:
https://doaj.org/article/682c354db65b4354849ae1b5c57e9033
Autor:
M. Lau, Z. G. Arenas
Publikováno v:
Trends in Computational and Applied Mathematics, Vol 24, Iss 3 (2023)
Development of mathematical models and its numerical implementations are essential tools in epidemiological modeling. Susceptible-Infected-Recovered (SIR) compartmental model, proposed by Kermack and McKendrick, in 1927, is a widely used deterministi
Externí odkaz:
https://doaj.org/article/4b62af795e2b46919bcdb285dc95e4cd
Autor:
David J. Warne, Anthony Ebert, Christopher Drovandi, Wenbiao Hu, Antonietta Mira, Kerrie Mengersen
Publikováno v:
BMC Public Health, Vol 20, Iss 1, Pp 1-14 (2020)
Abstract Background The global impact of COVID-19 and the country-specific responses to the pandemic provide an unparalleled opportunity to learn about different patterns of the outbreak and interventions. We model the global pattern of reported COVI
Externí odkaz:
https://doaj.org/article/30d7ed67ca23455c8b10c3f2a31ddb45
This paper offers a qualitative insight into the convergence of Bayesian parameter inference in a setup which mimics the modeling of the spread of a disease with associated disease measurements. Specifically, we are interested in the Bayesian model's
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::511ed812062458f548a9eccbe27b433d
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-473443
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-473443
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Marin, Robin
Computer simulations play a vital role in the modeling of infectious diseases. Different modeling regimes fit specific purposes, from ordinary differential equations to probabilistic formulations. Throughout the COVID-19 pandemic, we have seen how th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::166371475a4344b0b8b880d0eb632272
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-473445
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-473445
Autor:
Christopher C. Drovandi, Antonietta Mira, Kerrie Mengersen, Wenbiao Hu, Anthony Ebert, David J. Warne
Publikováno v:
BMC Public Health
BMC Public Health, Vol 20, Iss 1, Pp 1-14 (2020)
BMC Public Health, Vol 20, Iss 1, Pp 1-14 (2020)
BackgroundThe global impact of COVID-19 and the country-specific responses to the pandemic provide an unparalleled opportunity to learn about different patterns of the outbreak and interventions. We model the global pattern of trajectories of reporte
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Shatskikh, Katherine
Publikováno v:
Shatskikh, Katherine. (2017). Epidemic Detection in Two Populations. 0035: Statistics and Applied Probability. Retrieved from: http://www.escholarship.org/uc/item/4x1556mb
Traditional epidemic detection algorithms make decisions using only local information. We propose a novel approach that explicitly models spatial information fusion from several meta-populations. Our method also takes into account cost-benefit consid
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::371e88b39cc958df6bcd4962f5608dfa
http://www.escholarship.org/uc/item/4x1556mb
http://www.escholarship.org/uc/item/4x1556mb